Join us for conversations that inspire, recognize, and encourage innovation and best practices in the education profession.
Available on Apple Podcasts, Spotify, Google Podcasts, and more.
As one of the most encompassing levels of organization in the living world, an ecosystem is defined as a community of organisms along with their physical environment. The EcoColumn (see building instructions) is designed to model an ecosystem on a small scale. Its components include a terrestrial habitat with a compost unit and an aquatic habitat. We built ours by establishing a TerrAqua Column first and then adding to it—you can build yours the same way or as a complete system from the start.
The Life Science EcoColumn is designed as a study system for concepts addressed in the videos for Session 7 (Energy Flow in Communities) and Session 8 (Material Cycles in Ecosystems). This system provides opportunities to understand how energy is brought into the living world and transferred through food chains, and how the living and nonliving environments are intimately connected through cycles of matter.
Life Science has suggested several activities for the EcoColumn. “Taking Inventory” and “Pondering Change” (also suggested for the TerrAqua Column) provide baseline data for studying the system over time. “What’s on the Menu” examines the energy sources of the organisms in the EcoColumn, which makes it possible to construct a food web. “Basically, I’m a Fungi” reveals a portion of the food web that usually remains unseen in natural settings: the yeasts and molds that act as decomposers. “When It Rains…” turns the EcoColumn into a model of the water cycle. And “Decomposition Tea” compares the growth of plants in distilled water and fertilizer solution versus water that has flowed through the terrestrial and compost components of the EcoColumn.
You can follow along online and “Track Our Progress” with the “Basically, I’m a Fungi,” and “Decomposition Tea” activities.
For more background information and additional activity ideas, you can visit the Bottle Biology Web site at www.bottlebiology.com.
The EcoColumn starts with the basic units for a TerrAqua Column — an aquatic and terrestrial habitat — and adds an additional unit in between to act as a compost habitat.
What you stock your EcoColumn with involves your goals for study, the sources of your specimens — local or purchased — and your own creativity. To apply concepts from the videos, it will help you to think about including producers, consumers, and decomposers. The simplest way to stock your EcoColumn is to collect from your local environment so that you can model the ecosystem in which you live. To provide a breadth of examples, we combined local collections with purchased specimens to make our system particularly diverse.
Depending on the activities you choose to do, you may need one or more of the following:
For Building
Note: For more information on column construction, visit Bottle Basics.
For Stocking and Maintaining
It’s very important that all materials introduced into the EcoColumn — living, dead, or nonliving — are clean and free of anything that might be toxic to living things (e.g., oil, pesticides, etc.). The organisms you introduce should be small and suited to the habitats you construct. The number of organisms you introduce will depend on what they are, but it is better to add too few than too many, especially in the aquatic habitat. Bigger organisms should definitely be limited to one or two.
You can download an inventory of aquatic and terrestrial plants and animals (PDF) that Paul Williams has found make good choices. Many varieties can be collected from local environments and most can be purchased from Carolina Biological Supply Company (1-800–334–5551) or www.carolinabiological.com. The Bottle Biology Web site is also a resource for materials “custom designed” for bottle systems like this.
Aquatic habitat
Compost habitat
Terrestrial habitat
Aquatic habitat
Compost habitat
Terrestrial habitat
Both of the above can be purchased from Carolina Biological Supply Company (1-800–334–5551) or www.carolinabiological.com. Store unused media upside-down in a refrigerator.
The instructions for the Bottle Growing System are provided as part of the Brassica & Butterfly System. There are two suggested modifications for the “Decomposition Tea” activity. The first is to use substrate (i.e., soil) that is free of nutrients. While this isn’t absolutely necessary, if the substrate already contains nutrients, it will be difficult to detect differences due to varying nutrient levels in the water. We used “rock wool,” but other suitable materials include vermiculite, perlite, and dried peat moss mix. All of these, other than rock wool, are available at local garden supply stores. The second suggestion is to use small (740 ml) bottles.
Now that you’ve built the components you need for the EcoColumn, try these activities to further your understanding. First, read the instructions and perform the activity. Then, for selected activities, view an example of our results in track our progress.
The EcoColumn that you’ve designed includes a variety of aquatic and terrestrial organisms. In a study system like this, it’s important to describe the living things that you stock it with before you introduce them into their habitats. “Taking Inventory” will assist you in doing this, and “Pondering Change” will help you predict changes that you think will occur as your EcoColumn develops over time.
Taking Inventory
Pondering Change
At the start of your study period
At the end of your study period
In the video for Session 7 (Energy Flow in Communities), we explored how energy enters and is transferred through the living world. You have designed your EcoColumn to include producers, consumers, and decomposers, which makes it an excellent system for the study of energy flow. In “What’s on the Menu?” you’ll use what you know about the organisms in your EcoColumn to create a food web.
Pronounced by some as “fun guy,” the fungi are part of the mostly microbial world of decomposers. Along with bacteria, fungi are responsible for the decay of dead things that would otherwise pile up around us. Basically, I’m a Fungi makes these organisms readily observable as cultures that grow on special materials — Petri plates that contain prepared media that act as a food source. This particular medium contains a relatively high amount of sugar, which favors fungi over bacterial cultures.
Two types of fungi may grow in your plates. Yeasts tend to grow into smooth, spreading circular colonies, while most molds will eventually develop into fuzzy growths. It’s not important that you identify which is which, just that you observe and appreciate the diversity and abundance of these decay organisms, which can be found on almost every surface.
Note: It is safe to culture microbes in this way — they grow in a closed container and are types that are already present in the environment. To dispose of the plates, spray with disinfectant solution, seal, and throw away. The only thing to be careful about is opening the plate during your study — each time you do, you may introduce new microbes!
Before you swab your plates:
After your study period:
TRACK OUR PROGRESS: Basically, I’m a Fungi
It could be argued that the substance that is most important to the support of life is water. One of the reactants in photosynthesis — the chemical reaction that brings energy into the living world — is water. And, most cell processes must take place in the presence of water. Yet life relies on the physical environment for its water supply. Why doesn’t this water supply run out?
Along with other material cycles, the water cycle is essential to life on Earth. In “When It Rains…” you’ll use your EcoColumn to model the water cycle.
Water Cycle Concepts:
Evaporation — the change of state of water from a liquid to a gas (water vapor)
Transpiration — the evaporation of water from the surfaces of leaves
Condensation — the change of state of water from a water vapor to a liquid
Precipitation — water that falls in the form of rain, sleet, hail, or snow
Percolation — the flow of water through a substrate (e.g., soil)
Surface water — still or flowing water on the surface of the Earth
Groundwater — still or flowing water in the ground
In the video for Session 8 (Material Cycles in Ecosystems), the focus was on how the chemical elements required by living things are cycled between the living and nonliving environments. The action of decomposers is important in this process. Bacteria and fungi use the bodies of dead things for food, and in doing so, break down and release the chemical elements within. These become a store of nutrients for new generations of living things.
Just how important is the process of decomposition to new life? In “Decomposition Tea,” you’ll plant seeds and supply them with three different types of water: distilled water, fertilizer solution, and water taken from the aquatic habitat in your EcoColumn. We call this water “decomposition tea.”
Note: You can use seeds of any type for this activity. We suggest Fast Plants because of their rapid life cycle and predictable growth habits under the controlled conditions in a Light House. “Decomposition Tea” is water extracted from the aquatic habitat of your EcoColumn after it has developed for several (approximately four to five) weeks.
Before the study period begins
After the study period ends
TRACK OUR PROGRESS: Decomposition Tea
Get a glimpse of our system at various points in selected activites. Remember that every system is unique: don’t expect yours to look exactly like ours!