Earth Space Science: Energy Resources
Building an Energy Efficient Life

The following learning activities were backwards planned to facilitate the development of students' knowledge and skills for mastery of this NGSS Performance Expectation. Not all of the dimensions and CCSS are covered in the following activities and teachers are encouraged to address them where possible.

MS-ESS3 Earth and Human Activity

Students who demonstrate understanding can:

MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* [Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Constructing Explanations and Designing Solutions</th>
<th>ESS3.C: Human Impacts on Earth Systems</th>
<th>Influence of Science, Engineering, and Technology on Society and the Natural World</th>
</tr>
</thead>
</table>
| Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
 • Apply scientific principles to design an object, tool, process or system. (MS-ESS3-3) | • Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things. (MS-ESS3-3) | • All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ESS3-1),(MS-ESS3-4) |
| | • Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise. (MS-ESS3-3),(MS-ESS3-4) | • The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. (MS-ESS3-2),(MS-ESS3-3) |

Connections to other DCIs in this grade-band:

Articulation of DCIs across grade-bands:

Common Core State Standards Connections:

- **WHST.6-8.7** Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.
- **WHST.6-8.8** Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.
- **6.RP.A.1** Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities.
- **7.RP.A.2** Recognize and represent proportional relationships between quantities.
- **6.EE.B.6** Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
- **7.EE.B.4** Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.