<table>
<thead>
<tr>
<th>Objective</th>
<th>Design: Car Building (Balloon cars)</th>
<th>Investigation: Speed (flat surface)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will construct a zipline to recognize and analyze the motion (and cause of motion) of an object. Students will begin to be able to evaluate the causes of motion and deduce the important factors in measuring motion (time and distance).</td>
<td>Students will design and construct a self-propelled car to examine how forces are used to move objects.</td>
<td>Students will compute the speed of their cars and compare/contrast the speeds of different cars. Students will be able to produce a D vs. T graph from their data.</td>
</tr>
<tr>
<td>Student Experience</td>
<td>Teacher introduces culminating activity (design a car that completes a track with defined parameters)</td>
<td>1) Students reminded of class brainstorm about how to measure motion (speed).</td>
</tr>
<tr>
<td>1) Students brainstorm meaning of motion. 2) Students design a “zipline” from chair to chair that goes thru a straw. 3) Students then attach an object to straw and brainstorm ways of moving it. 2) Students investigate what causes motion. (unbalanced forces) 3) Students investigate what causes more/less motion. 4) Students brainstorm how to measure motion/speed.</td>
<td>2) Teacher allows students access to materials that will be used to build their car. 3) Students are introduced to Newton’s 3rd Law of motion (rocket examples) as a propulsion method. 4) Students design and construct cars. 5) Students diagram their designs showing where and in what directions the forces are located. 6) Students give rationale for design.</td>
<td>2) Students now use knowledge of speed equation to calculate the speed of their car on a flat surface. 3) Students improve design to maximize efficiency (end goal in mind = not just fastest).</td>
</tr>
<tr>
<td>EXTRA: Students investigate if different object’s (mass) motion is different.</td>
<td>EXTRA: Student investigate alternate forms of propulsion (rubberband)</td>
<td>4) Students graph results of different car designs and analyze the causes for the differences in speed. 5) Students justify their final car design.</td>
</tr>
<tr>
<td>T4T Material</td>
<td>Teaching points: Forces can increase and decrease speed</td>
<td>Teaching points: relationship between slope of line and speed</td>
</tr>
<tr>
<td>Fishing Line, Balloons, Straws, Tape,</td>
<td>Bottle tops, Dowels, Binder Clips, Tape, Blinds, Balloons</td>
<td>Motion energy is kinetic energy.</td>
</tr>
<tr>
<td>Big Idea</td>
<td>Measuring motion: Speed= distance/time Average speed= total D/total T</td>
<td>Graphing speed</td>
</tr>
<tr>
<td>Motion: distance from a reference point must change. Motion is achieved when unbalanced forces are applied. The amount of mass and force affect motion of an object. Distances and time are necessary to calculate speed.</td>
<td>Unbalanced forces cause motion. Newton’s 3rd Law of Motion: an equal and opposite reaction to propel a car. Alternative ways to propel cars. Friction occurs when two objects are in contact and works against motion. Cars can be more efficient by reducing the friction acting within the car.</td>
<td>Motion energy is kinetic energy. Measuring motion: Speed= distance/time Average speed= total D/total T Graphing speed</td>
</tr>
<tr>
<td>Connection to Culminating Activity</td>
<td>Design/build a car that is able to complete track</td>
<td>Speed of car when moving along track. Graphing of speed to present results to class.</td>
</tr>
<tr>
<td>Introduction to vocabulary (motion, force, gravity, acceleration, etc.) Unbalanced forces cause motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA Standards</td>
<td>CA Standards</td>
<td>CA Standards</td>
</tr>
<tr>
<td>Next Gen Sci Standards</td>
<td>Next Gen Sci Standards</td>
<td>Next Gen Sci Standards</td>
</tr>
<tr>
<td>PE: MS-PS2-2</td>
<td>PE: MS-PS2-1</td>
<td>PE: MS-PS2-2</td>
</tr>
<tr>
<td>S&E Princ: Planning and Carrying out investigations</td>
<td>S&E PRINC: Constructing Explanations and Designing Solutions</td>
<td>S&E Princ: Planning and Carrying out investigations</td>
</tr>
<tr>
<td>CrossCutting: Cause and Effect/ Stability and Change</td>
<td>CrossCutting: Influence of Science, Engineering, and Technology</td>
<td>CrossCutting: Cause and Effect/ Stability and Change</td>
</tr>
<tr>
<td>Investigation: Varying mass of car
(effect on speed/acceleration)</td>
<td>Investigation: Varying the force acting on car
(effect on speed/acceleration)</td>
<td>Predicting: Car collisions</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Objective</td>
<td>Students will be able to analyze/evaluate the effect of changing the mass of the car on the car’s speed and acceleration.</td>
<td>Students will be able to analyze/evaluate the effect of changing the amount of force (exerted on the car) on the car’s speed and acceleration.</td>
</tr>
<tr>
<td>Student Experience</td>
<td>1) Students add varying masses to the car (with force constant) and examine its effect on the motion of the car.
2) Students change mass at least three times and run 3 trials each on flat surface used previously to calculate speed
3) Students data is organized into table and graphed
4) Student data is compared/contrasted between groups
5) Students conclude the effect of adding/subtracting mass on a car’s motion
6) F=MA is introduced
EXTRA: Teaching points: control variable, experimental error, accuracy, precision</td>
<td>1) Students change the amount of force (adding balloons) exerted on the car and examine its effect on the motion.
2) Students change the amount of force at least 3 times and run 3 trials to calculate speed
3) Students data is organized into table and graphed
4) Student data is compared/contrasted between groups
5) Students conclude the effect of changing the force on a car’s motion
6) Students determine how force and mass are proportional to acceleration
EXTRA: Teaching points: directly proportional, inversely proportional</td>
</tr>
<tr>
<td>T4T Material</td>
<td>Student Built Balloon Cars, Masses</td>
<td>Student Built Balloon Cars, Extra Balloons,</td>
</tr>
<tr>
<td>Big Idea</td>
<td>Newton’s 2nd Law of Motion: Changing the mass of car affects the speed and acceleration. The greater the mass of the object the greater the force needed to achieve the same motion.</td>
<td>Newton’s 2nd Law of Motion: Changing the force on the car affects the speed and acceleration. The greater the mass of the object the greater the force needed to achieve the same motion.</td>
</tr>
<tr>
<td>Connection to Culminating Activity</td>
<td>Amount of mass the designed car needs for optimal performance.</td>
<td>Amount of force the designed car needs for optimal performance</td>
</tr>
<tr>
<td>CA Standards</td>
<td>8.2.d/8.2.f/</td>
<td>8.2.b/8.2.c/8.1.f</td>
</tr>
<tr>
<td>Investigation: Gravity and Cars (ramps)</td>
<td>Investigation: Uphill climb</td>
<td>Design: Car Course</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Objective</td>
<td>Students will be able to analyze all the forces acting on a car traveling up an incline and will design/construct a car that is able to move up and over an incline</td>
<td>Students will design/construct a car that is able to complete their designed track(or course) and evaluate the effectiveness of their car (including speed, forces acting on car, etc.)</td>
</tr>
<tr>
<td>Student Experience</td>
<td>1) Students set up ramps as a way of giving potential energy to cars 2) Students predict the effect of higher/lower incline on motion 3) Students measure distance car will move and time the car moving on different inclines 4) Students collect speed data from different inclines and graph results 5) Students share data for accuracy 6) Students diagram the energy at the car has at different points of the incline (PE → KE) and identify where energy is lost 7) Students conclude how energy in a system is converted from one form to another</td>
<td>1) Students construct uphill ramps for cars to climb 2) Students decide on method of propulsion for car that will allow the car to climb the ramp 3) Students experiment with propulsion method to determine the amount and placement of force needed to climb ramp 4) Students’ cars need to complete at least 1 uphill climb in culminating project that propels itself uphill. 5)</td>
</tr>
<tr>
<td>T4T Material</td>
<td>Student Built Balloon Cars , White Board Ramps, Tape</td>
<td>Student Built Balloon Cars , White Board Ramps, Tape</td>
</tr>
<tr>
<td>Big Idea</td>
<td>Objects may also contain potential energy depending on relative positions. Potential energy increases as height of ramp increases. When two objects interact energy can be transferred from one object to another.</td>
<td>When two object interact energy can be transferred from one object to another. Amount of force needed to propel car must be greater than forces acting in opposite direction.</td>
</tr>
<tr>
<td>Connection to Culminating Activity</td>
<td>Height of hills must give cars enough energy to complete course.</td>
<td>Car’s propulsion must allow car to ascend hill In course.</td>
</tr>
<tr>
<td>CA Standards</td>
<td>PE: MS-PS3-2</td>
<td>PE: MS-PS2-1</td>
</tr>
</tbody>
</table>