Chemistry: Reactions
The Self-Warming/Cooling Device

The following learning activities were backwards planned to facilitate the development of students’ knowledge and skills for mastery of this NGSS Performance Expectation. Not all of the dimensions and CCSS are covered in the following activities and teachers are encouraged to address them where possible.

MS-PS1-6 Matter and its Interactions

Students who demonstrate understanding can:

MS-PS1-6. Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.* [Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.] [Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.]

The performance expectation above was developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.

- Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints.

Disciplinary Core Ideas

PS1.B: Chemical Reactions

- Some chemical reactions release energy, others store energy.

ETS1.B: Developing Possible Solutions

- A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary)

ETS1.C: Optimizing the Design Solution

- Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the new design. (secondary)

- The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (secondary)

Crosscutting Concepts

Energy and Matter

- The transfer of energy can be tracked as energy flows through a designed or natural system.

Connections to other DCIs in this grade-band:

MS-PS3.D

Articulation of DCIs across grade-bands:

Common Core State Standards Connections:

ELA/Literacy -

RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS1-6)

WHST.6-8.7 Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS1-6)