Physics – Forces – The Glider Project

	Mystery (inertia) Stations (Newton's 1 st)	Carts & Masses (Newton's 2 nd)	Force Meters (Weight & Hooke's Law)
Student Experience	Students visit various inertia demonstrations around room, and must determine what they all have in common (concept of inertia is not discussed until end of lesson).	Students attach various masses to a string connected to a cart. The mass falls, students determine the acceleration of the cart, and discover the relationship between force, mass, and acceleration.	Students create their own force meters using an elastic material (from the T4T cart) and calibrate them by hanging known masses.
T4T Material	Bowling ball, table tennis ball, pennies, tablecloth, dishes	T4T cart, string, set of weights	Elastic material from cart, vinyl window blind, set of weights
Big Idea	Newton's 1 st Law. An object in motion will continue in motion with constant velocity unless acted upon by a net external force.	Newton's 2 nd Law. F _{net} = m a .	Weight: F g = mg Hooke's Law: F s = -k x (honors physics only)
Connection to Culminating Activity	The glider's inertia causes its resistance to acceleration when launched.	A net external force on an object will cause it to accelerate, which explains the glider's acceleration during launch.	The force meters are essentially scaled-down versions of the glider launcher that will be used in the culminating project.
CA Standards	PH1. b.	PH1. c.	
Next Gen. Sci. Standards		HS-PS2-1.	
Time	One 55-min period	Two 55-min periods	One 55-min period

CA Standards:

PH1. b.	Students know that when forces are balanced, no acceleration occurs; thus an object continues to move at a constant speed or stays at rest (Newton's first law).
PH1. c.	Students know how to apply the law $F = ma$ to solve one-dimensional motion problems that involve constant forces (Newton's second law).
PH1. d.	Students know that when one object exerts a force on a second object, the second object always exerts a force of equal magnitude and in the opposite direction (Newton's third law).

	Tug-of-War (Newton's 3 rd)	Force Stations (FBDs)	Glider Engineering (Culminating Activity)
Student Experience	Students use their force meters to investigate systems where forces oppose each other. They predict force meter readings before testing.	Students visit stations around the room and "draw the forces." Then, FBDs are introduced, and students create correct FBDs for each system.	Students create a glider to be launched by a rubber band or gravity-driven launcher. The glider must achieve a minimum launch velocity, but avoid too great an acceleration (so the "pilot" doesn't black-out). If using rubber band, teacher provides students with average force exerted by the launcher.
Material	Student-made force meters.	T4T cart materials, simple machines.	T4T cart materials
Big Idea	Newton's 3 rd Law. F _{A,B} = -F _{B,A}	Free-body diagrams help depict the forces acting on a system.	$\mathbf{F}_{net} = \mathbf{ma}$ $v^2 = v_0^2 + 2a\Delta x$
Connection to Culminating Activity		Students will create a FBD of the glider-catapult system.	
CA Standards	PH1. d.		
Next Gen. Sci. Standards			HS-PS2-1
Time	One 55-min period	One 55-min period	Five to eight 55-min periods

Activity Guide for Forces Unit

Prior Knowledge:

- Students know how to solve problems that involve constant speed and average speed. ($v = \Delta x / \Delta t$)
- Students know how to solve problems that involve constant acceleration and average acceleration $(a = \Delta v / \Delta t)$
- Students know how to solve for the acceleration *a* of an object starting at rest ($v_0 = 0$) and traveling a given distance Δx for an amount of time *t*. (Use $\Delta x = v_0 t + \frac{1}{2} at^2$.)
- Students know how to solve for the final velocity v of an object starting at rest ($v_0 = 0$) and undergoing a constant acceleration a for a distance Δx . (Use $v^2 = v_0^2 + 2a\Delta x$.)
- Students know that a gravity will accelerate a falling object at 9.8 m/s^2 .