Now that you have designed a Lunar Buggy that will transport astronauts around the lunar surface, you need to think about safely delivering this vehicle to the Moon. When NASA sent its two robotic rovers, Spirit and Opportunity, to Mars, they landed on Mars in a very interesting fashion. They fell out of the Martian sky, slowed down by a parachute and then bounced on the surface until they came to a stop!

How did they do that? The rovers were inside a landing pod made of AIR BAGS! But the Martian atmosphere and surface is very different from the Moon, so to repeat this on the Moon would require several design modifications.
THE CHALLENGE:

Each team must design and build a Landing Pod that will safely deliver your Lunar Buggy to the Moon’s surface. The Landing Pod must meet the following constraints:

1. The Landing Pod must safely deliver your Lunar Buggy to the surface from a height given by the teacher.

2. The Landing Pod must land RIGHT-SIDE up, and the Lunar Buggy roll out in the correct orientation.

3. Materials of the Landing Pod must be reusable for other missions on the lunar surface. If a balloon pops or tape folds over on itself, those items are no longer reusable.

4. The Landing Pod must have a hatch or door for release of the Lunar Buggy, and should then roll out with no more than a nudge onto the ramp. Therefore, the Lunar Buggy cannot be taped or glued inside the Landing Pod.

5. The Lunar Buggy should not suffer any damage from the lunar landing and still be able to roll down a ramp.
What questions do you have about today's challenge?

From what height will you drop your Buggy for testing?

How do you plan to protect the rover inside the Landing Pod?

What will you use to protect the outside of the Landing Pod?

How will you make sure the Landing Pod lands right-side up?
Design a Landing Pod

Student page

To design and build a Landing Pod for the model Lunar Buggy that was built in the previous session.

Outside view with door or “hatch”

Inside view with your Lunar Buggy

Approved by: ____________________________
Experiment & Record

Make two test drops with your Landing Pod, but the first drop should be half the height of the final drop height given by your teacher. For example, if the final test drop is 3 meters, you should first test a drop at 1.5 meters (150 cm). Record what happens to your Landing Pod and the Lander inside.

Landing Pod Drop Test Data Table

<table>
<thead>
<tr>
<th>Trial</th>
<th>Drop Height (m)</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design challenge

To design and build a Landing Pod for the model Lunar Buggy that was built in the previous session.

What is the biggest difficulty that your Buggy faces?

Name one change your team should make to your Landing Pod to improve its landing.

Now for the actual lunar landing! Follow your teacher’s instructions, then answer the following questions.

Post Lunar Landing Questions

<table>
<thead>
<tr>
<th>Did the Landing Pod remain closed during impact? (YES or NO)</th>
<th>Did the Lunar Buggy land in an upright position? (YES or NO)</th>
<th>How far did the Buggy roll beyond the ramp? (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you answered “no” to the above questions, or your Buggy did not roll down the ramp properly, explain what happened to your design or draw the damage that occurred.

__

__

__

__

__

__