OBJECTIVE
To demonstrate an understanding of the Engineering Design Process while utilizing each stage to successfully complete a team challenge.

PROCESS SKILLS
Measuring, calculating, designing, evaluating

MATERIALS
General building supplies
Bag of various sized buttons
1 Mailing tube, oatmeal canister or other container (used as a size constraint)

STUDENT PAGES
Design Challenge
Ask, Imagine and Plan
Experiment and Record
MOTIVATE

- Spend a few minutes asking students if they know what engineers do, then show the NASA's BEST Students video titled, “What is Engineering”: http://svs.gsfc.nasa.gov/goto?10515
- Using the Engineering Design Process (EDP) graphic on the previous page, discuss the EDP with your students:
 - **Ask** a question about the goal.
 - **Imagine** a possible solution.
 - **Plan out** a design and draw your ideas.
 - **Create** and construct a working model.
 - **Experiment** and test that model.
 - **Improve** and try to revise that model.

SET THE STAGE:

ASK IMAGINE & PLAN

- Share the Design Challenge orally with the students (see next page).
- Have students ask questions and brainstorm ideas as a group, then break into teams to create a drawing of their satellite. All drawings should be approved before building begins.

CREATE

- Distribute materials for students to build their satellites based on their designs and specifications.
- Ask teams to double check mathematical calculations, designs and models. Visit each team to make sure their model can fit within the size specification of the cylinder or box you are using.

EXPERIMENT

- Have students inspect their satellite after the drop and rework their design if needed.
CHALLENGE CLOSURE

Engage the students in a discussion with the following questions:

- List two things you learned about what engineers do through building your satellite today.
- What was the greatest difficulty you encountered while trying to complete this satellite challenge? How did your team solve this problem?

PREVIEWING NEXT SESSION

Ask teams to bring back their satellite model for use at the next session. You may want to store them in the classroom or have one of the club facilitators be responsible for their safe return.
NASA’s lunar exploration missions will collect scientific data to help scientists and engineers better understand the Moon’s features and environment. These missions will ultimately help NASA determine the best locations for future human exploration and lunar bases.
SATELLITE INSTRUMENTS

The information gathered by lunar exploration missions will add to information collected during earlier missions. Some of these missions gathered data that caused scientists to have more questions — questions they hope to solve with new instruments on new satellites. For example, NASA has recently sent a satellite to look for water ice on the Moon. Thus, that satellite carried instruments (sometimes called “detectors” or “sensors”) to look for the ice. Other instruments will help collect data to make exact maps of the Moon’s surface and make careful measurements of the radiation falling on the lunar surface for the safety of future lunar explorers.

TEAMWORK IS IMPORTANT

The different instruments are designed, tested, and assembled by different teams of engineers and scientists. The separate teams must work together to ensure instruments are the right mass, fit correctly, and make proper measurements. Working together is an important skill for everyone to practice.
THE CHALLENGE:
Your mission is to build a model of a lunar exploration satellite with the general building supplies provided. Use different shape and sizes of buttons or beads to represent the various instruments. The design constraints are:
1. Using the data on the Ask, Imagine, and Plan worksheets, calculate the total mass of the instruments. The total mass, including detectors, probes, sensors and solar cells, can be no greater than 10 grams.

2. The entire satellite must fit within the _______ (i.e. mailing tube, oatmeal canister). This item is a size constraint. The satellite is not to be stored in this or launched from this item.

3. The satellite must withstand a 1-meter Drop Test without any pieces falling off.
What questions do you have about today's challenge?

The objective of this activity is to design your own satellite. These are the instruments you may choose to use put on your satellite:

- **Camera**
 - Total Mass = 2.5 g

- **Gravity Probe**
 - Total Mass = 2 g

- **Heat Sensor**
 - Total Mass = 1 g

Each of these instruments requires a certain number of solar cells to operate on your satellite. A **solar cell** collects energy from the sun to power the instruments. Each solar cell has a mass of 0.5 g. A **camera** requires 3 solar cells to operate. A **gravity probe** requires 2 solar cells to operate. A heat sensor requires 1 solar cell to operate.
If you were to build a satellite with two (2) cameras and one (1) heat sensor, how many solar cells would you need? Write the number sentence below for this problem:

__

If you were to build a satellite with two (2) cameras and one (1) heat sensor, would the total mass be greater or less than the mass limit for the challenge? Write the number sentence below for this problem:

__

Now draw your own satellite. Include the correct number of solar cells it will need and label each instrument.

Approved by: ________________________________
Experiment & Record
1. Write a hypothesis. Complete the following statement:
When our team’s satellite is dropped from a height of one (1) meter, it will:

__
__

2. Record your observations.
Describe what happened during your satellite’s drop from a height one (1) meter.

__
__

Did any instruments fall off the satellite? Yes No
Was the satellite damaged during the fall? Yes No

If you answered yes to either question above, explain how your team could improve the design to make sure these errors would not happen again.

__
__
__