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Brownies were consumed
by eager sixth, seventh, and
eighth graders who enjoyed
the warm hospitality of the
Museum of Science in
Bouston. Massachusetts.
The students enrolled vol-
untarily, and no entrance
requirements were neces-
sary for the enrichiment
class. The success [ have had with this exercise may
have had a lot to do with the fact that almaest cvery ju-
nior high school student has experienced tire pleasure
of cutting a cake for fricnds.

OR THE LAST CLASS. I BAKLE BROWNIES.
However, there’s a caich! No one gels a
brownie until someone can ligure out how
10 cut the single laver imo equally sized
pieces for all. The result has always been a produc-
tive hour of creativity as the students work hard to
earn a hite of the scrumptious. chocolate-iilled
treal. '
Executing this project effectively. however. re-
quires some preparation. The success or failure of
the project hinges primarily on choosing an appro-
priate shape. And. of course, it is important to bake
a delicious brownie!
In this article, I offer techniques for making this
project a reality. All the figures, with the exception
of figure 12, are drawn 1o scale.
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ohd brownie

Choosing the Right Shape

THE AIM IS TO PICK A SHAPE THAT IS NOT TOO
simple vet not artificially complicated. Rectangles
will not do. Yet the shape must be chosen so thata
nice solution is possible.

Rather than begin with a large shape and deter-
mine whether it can be dissected into the desired
number of brownies of equal area. we try to imag-
ine stall shapes of equal area and build up a large
shape by piecing the small ones together. We begin
with the simplest polvgon. the triangle. Triangles
tessellate the plane and offer much potential for
building panicularly nice and interesting brownie
shapes.

To begin, we use the fact that the sum of the first
N odd numbers is equal to N°. Thus, if the number
of students in the class is a periect square. one can
present the class with a triangular brownie. See fig-
ure 1's detailed mathematical explanation. These
triangles serve as our building blocks.

From such triangles. we can proceed in two di-
rections for class sizes that are (1) the sum of two
squares or (2) the difference of two squares. In
hrownie language, these directions translate into
joining two triangles together into one quadrilateral
or taking such a triangle and cutting off the tip to
form a trapezoid. [ shall explain these constructions
in more detail.

Suppose the class size can be written as the sum
of two squares, say. a° + . We then make two main
triangles of the sort found in figure 1. One will con-
sist of @’ triangles and the other of & triangles. We
carefully ensure that the two main triangles have a
common side length so that we can join them to-
gether along these sides and obtain a quadrilateral.
Note that the constituent triangles of one main tri-
angle do not have to be similar to the constituent
triangles of the other main triangle. but care must
he taken to ensure that they have the same area. In
other words. the areas of the two main triangles
must be in ratio a*:b°. Equivalendy. the heights, as
measured from the common side. must be in the

ratio a™b°. For an example when a = 2 and b = 3. see
figure 2. _

[n theory, this quadnlateral technique will work
for anv number that can be written as the sum of two
squares. Anv number whose prime factors congru-
ent to 3 modulo 4 occur with only even exponents in
the prime factorization can be so written. (This fact
from number theory was proved by Albert Girard in
1625. It is bevond the scope of this paper 1o reprove
it. The interested reader is referred to Davenport
[19492. chap. 5].) However. not all such numbers
vield aesthetically pleasing brownies. To obuin a
nice brownie this way. the two squares should be
close to each other: otherwise, one of the main trian-
gles will be very thin compared with the other.
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Fig. 1 Decompeosing 3 triangie into a perfect square number
of triangles, all congruent, will work for anry triangle, not just
the right triangles pictured here. To see why this decomposi-
tion comprises a perfect-square number of triangles, first
note that this figure can be constructed by dividing each side
into N equal segments and then connecting the division
points by lines parailel to the sides. Since the resuiting small
triangles are all similar to the whole triangie by a factor of
1:N, it follows that the areas are in ratio 1:N2. Consequently,
N? smaller triangles are inside the big one. This cutting
scheme is a visual representation of the artthmetic identity
1+43+45+---+{2n=1l=m.
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Fig. 2 A quadrilateral Is
formed by joining two ti-
angles, each coasisting of
a perfect square of trian-
gesfor 1322+ 32
“browniephiles.” Thesa /
dimensions are oaly sug- ~/
gestive of the possibilities. /
The coly crucial point s \
that the ratios of the

heights of the two trian- \
gles, a3 measured from

their shared side, is in " " g
ratio 2%:32

Suppose the class size is a difference of two
squares, say g° - &. We imagine a triangle. like
those in figure 1, comprising @ triangles. We then
slice off an appropriately sized dp of this triangle,
namely, a tip that contains b° of the smaller trian-
gles. The result is a trapezoid. For example, the
shape in figure 3, which is obtained by slicing off
the tip of a triangle of &° pieces, works well for 27 =
6 - 3 people.

Every odd number is the difference of two con-
secutive squares. since 25 + 1 = (# + 1)° = 0. How-
ever, this trapezoid technique tends to yield brown-
ies that are virtually rectangular for odd numbers
bigger than about 6.

For other class sizes, a linle ingenuity is re-
quired. Using rectangles in addition to triangles
helps a great deal. Let us consider a class size of 17.
The number 17 can be written as a difference of two
squares in just one way: 9° - 8. On the one hand,
the trapezoid method works but looks too rectan-
gular (see fig. 4). On the other hand. 17 = 1 + 4, so
the quadrilateral method works. too, but leaves one
person with an awfully long and thin slice of

Fig. 3 When using the trapeznid technique for a class of

27 = 62~ 32, the bases are 3 and 6 units and the height is 3
units. Left and right excess lengths are 1 and 2 units,
respectively. As with the quadrilateral in figure 2, the only
crucial point is that the ratio of the base lengths be 3:6.
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Fig. 4 For large odd-numbered class sizes, it is not good to
use a trapezoid because the trapeznids become somewhat
rectangular, like this one for a class of seventeen.
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Fig. 5 For quadrilaterals, the two main constituent triangies
shouid hoid roughly the same mumber of tiangies. Otherwise
shapes fike this one will result. Note the very thin sfice on the left.
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fig. 6 A house of seventeen pieces, each a hearty eight
square inches!



brownie (see fig. 5). Perhaps a mure aesthetically
pleasing shape is possible. Here, one has to play
with numbers, and we find that 17 = 8+ 9= (3° - 1)
« 3. ‘This realization of the number 17 translates
into joining a trapezoid with a revtangle to produce,
in other words, a huuse! (See fig. 6.) This solutiun
is cenainly not the only une. As one of the anony-
mous referees pointed out, since 9 is a perfect
square, we can make a figure consisting of a trape
zvid and a triangle, which would result in a2 wild
pentagonal shape!

Fixing the Exact Dimensions

ONCE A SHAPE HAS BEEN DETERMINED. THE
next step is to select exact specificatons for the
brownie. It is important to use measurements that
are simple whole ratius relative to one another,
since although the shape is chosen with a particu-
larly elegant solution in mind, one must allow for a
variety of other cutting possibilities. lf the measure-
ments have complicated. irrational ratios. finding al-
ternative cutting schemes may become difficult.

For example. let us consider a class size of 16.
Suppose we select a trapezoid based on the fact that
16 = 5° - 3. In this instance, the two bases of the
trapezoid are forced to be in a ratio of 3:5. We want
the brownie to be scaled for human consumption.
We therefore make our bases 6 and 10 inches. But
what about the height? If we make the brownie
height A, then each person will get

1(1
T3t -s)=3
square inches of brownie. Such an area is a rela-
tively simple number with which to work. regard-
less of the value of . so long as % is a whole num-
ber. So we are free to base this number on the
amount of brownie we can bake or on the dimen-
sions of the cooking pans. For one class, [ chose
h = 9inches.

The trapezoid is not yet completely determined.
In a trapezoid. the lower and upper base need not
be aligned. If one draws altitudinal lines from the
endpoints of the shorter base to the longer base,
these lines will intersect the longer base at not nec-
essarily equal distances from the endpoints of the
longer base. I shall call these distances the left and
right excess lengths.

These excesses remain to be computed. We
need two positive numbers A and B such that 4 +
B = 4, the difference of the two base lengths. Choos-
ing vZ and 4 - 2 is probably not a good idea be-
cause (1) it destroys the possibility of having a cut-

ting scheme thaf uses aititudinal
cuts from the endpoints of the
smaller base to the larger base and
(2) the resulting pieces no longer
have areas that are a multiple of 4.5,
the area of the individual pieces.
However, chuusing buth to be 2 iy
too symmetric, and someone who
decides to draw in these altirudinal
cuts will have essentially two prob-
lems instead of three because the
three resulting pieces would really consist of two
congruent triangles and one rectangle. Thus, we
pick measurements of 1 and 3 inches (sve fig. 7).

Later. I describe what actually happened in class
to this very brownie.

Baking the Brownie

A BROWNIE'S BAKING TIME IS PROPORTIONAL TO
its thickness. Most brownie packages include
enough information to determine the constant of
proportionality. Using a uniform thickness for the
brownie is also important so that the project re-
mains concerned with areas and not volumes.

It is much easier to bake a rectangular brownie
and then cut it to size than to bake a brownie in a
weirdly shaped tin. The latter produces sharp
edges that tend to harden. making cutting diffi-
cult. Finally, it is crucial to let the brownie cool
before cutting.
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Fig,TShmisatrapuoidwiﬂlbaaGmdmincha-ﬂ
height 9 inches. Left and right excess lengths are 1 and 3
inches, respectively.
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A Remark on “Antimotivation”

WHEN | INTRODUCED THIS PROJECT, THE STU-
dents were so anxious to get at the brownie that
hands shot up arvund the rvom as svon as the prob-
lem was stated. The remarks made were not solu-
tions but desperate stabs in the dark.

To suppress this behavior, | used the leftover
brownie that was cut away during the cooking
pracess. | declared that we would all share the
leftovers. but that anyone who claimed to have a
solution that turned out 1o be wrong would forfeit
his or her share. Despite students’ protests, they
went straight to work.

This declaraticn was cerwinly not intended to
discourage guesses and conjectures, which would
have been a disaster. In class, the motivation to
get some brownie seemed to override this factor.
Also, | let the students know that it was fine to
show me their designs in progress. [ tried to avoid
answering the question “Will this work?” by in-
stead suggesting some questions to lead the stu-
dent to his or her own answer to that question. For
example. typical response questions were “What
exactly is this length vou've drawn?” or “Can vou
tell me what the area of this piece in your picture
is?" or "Please explain to me just what you've
drawn.” The reward for refraining from giving the
answers came when one student declared with ab-
solute confidence, “I have it!”

Depending on the circumstances. [ only more or
less kept to the dreadful threat of not being able to
share in the leftover brownie.

From Theory to Practice

FOR THE CLASS OF SIXTEEN AND THE TRAPE-
zoidal brownie of figure 7, an hour of creativity re-
sulted in four different solutions from six people.

Two young girls. a sixth grader named Alexandra
and a seventh grader named Claire, surprised me by
finding the soludon shown in figure 7, which is re-
markable in that they were working independently.
Alexandra’s answer may have resulted from a recent
project on tessellations involving triangular tessella-
tions of the plane. For Claire, I can only say that she
must have been seized by some inspiration! Of
equal fascination were the other, rather clever, solu-
tions, of which I will discuss two in detail.

John, a seventh grader. and Juliet. a sixth grader.
together solved the problem by making a scaled-
down replica of the brownie on a sheet of graph
paper. John found that each person should get four
and one-half square inches of brownie by comput-
ing the total area and dividing by the number of

people. Each graph-paper square corresponded to 1
square inch on their scaled-down picture. They de
duced that they would have a solution if they could
somehow lump together groups of four and one-
half squares. They ran into a problem when they hit
the slanted edges of the trapezoid. forcing them 1o
consider the area of triangular regions formed by
the slanted sides ol the trapezoid and certain grid
lines of the graph paper. After a half-hour of calcula-
tions. they discovered a tricky way of handling the
slanted edges by cutting out various right triangles
and right wrapezoids whose slanted sides lay on the
slanted edge ol the big trapezoid. See figure 8.
These right tiangles and right trapezoids were
skillfully wrought into the proper area. leaving be-
hind a shape whose sides met at right angles. They

Tumped together groups of four and one-half

squares untl all the pieces were used. Sixteen
somewhar odd looking shapes were achieved by a
process that hints at integration, which typicaily
calls for approximating an area by inscribing a num-
ber of shapes for which the area is known.

Philip. an eighth grader. divided the trapezoid
into three parts using the altitudinal cuts described
earlier (see fig. 9). This approach split the problem
into three involving the simpler shapes of two trian-
gles and a rectangle. The smaller uiangle was al-
ready of the appropriate area. The rectangle was
twelve times the desired area. so Philip divided it by
using a standard three-by-four gridwork. However,
the larger triangle was three times too large, and
for a long time he was stumped on how to divide
this triangle into thirds. He divided the base into
thirds and connected the division points to the apex
of the triangle. but his intuition told him that the re-

“sulting triangles did not have the same area—a

Fig. 8 lohn and Juliet's figure-7 trapezoid is shown on graph
paper. Grid lines are added for the convenience of the reader.



Fig. 9 Philip’s divide-and-conquer cutting scheme for the
trapezoid in figure 7. The subdivision of the large triangle on
the right gives some the false impression that the three con-
stituent triangies do not have the same area. By understand-
ing that these areas are, in fact, equal, amounts to under-
standing that the determinant of a matrix remains unchanged
if one adds a multipie of one column to any other column.

common error! Near the end of the hour. ! asked
him. “What is the area of a triangle?” He responded.
“One-half base times height!" So [ asked him.
“What are the bases and heights of the three trian-
gles you have constructed?” He thought a moment,
and the burst of happiness said it all! In essence,
Philip discovered that the determinant of a matrix
remains unchanged when adding a muitiple of a
column to another column. After all. the determi-
nant can be interpreted as the volume of the paral-
lelepiped defined by the column vectors of the ma-
trix. When he someday encounters determinants, [
am sure that the concept will be much easier for
him to comprehend.

Since four different solutions were offered. we
voted to determine which plan would actually be
used. To my astonishment and delight, most stu-
dents voted for Alexandra and Claire’s solution. [
also regard it as being the most elegant for numer-
ous reasons: (1) this cutting scheme shows at a
glance that a solution has been achieved. since all
the pieces are congruent; and (2) the slices re-
quired to realize the scheme are broad straight
lines that run fully across the brownie. Mathemat-
ics is an art. and the fact that even those who had
proposed alternative solutions voted for this solu-
tion shows that children have a mathematical aes-
thetic! Nonetheless. [ feel strongly that the teacher
must carry out the cutting scheme for which the
students vote. no matter what the teacher believes
is the most elegant solution.

Conclusion

STUDENTS NOT ONLY ENJOY THIS PROJECT BUT
also gain greater facility in working with areas.
However, | do not recommend trying it unul stu-
dents have had some experience with at least a few
basic area formulas.

For those wishing to attempt this project, table 1
contains a number of possible shapes to use with
various class sizes. Each has an elegant solution.

(Continued on page 160)

Table 1

Possible Brownie Shapes

Triangles are indicated by the number of pieces into
which they are to be cut, always a pertect square;
quadrilaterals, by the number of pieces into which
each of the two constituent triangles are to be cut;
trapezoids, by the ratio of the base lengths. These
possibilites are not meant to be the best shapes to use.

Class Size Shape Possibility

5 2:3 trapezoids

6 House with 22 triangle roof

7 3:4 trapezoid

8 1:3 trapezoid or 2%/2? quadrilateral

9 Triangle

10 Hexegon: two 2:3 trapezoids

11 House with 1:3 trapezoid roof

12 2:4 trapezoid

13 Octagon: two 2:3 trapezoids with
sandwiched rectangle (see fig. 10)

14 Hexagon: two 3:4 trapezoids

15 1:4 trapezoid

16 Triangle or 3:5 trapezoid

17 House with 1:3 trapezoid roof

18 3%/3? quadrilateral

19 House with 1:3 trapezoid roof

20 4:6 trapezoid

21 2:5 trapezoid

22 Octagon: two 1:3 trapezoids with
sandwiched rectangle (see fig. 110

23 House with 1:4 trapezoid roof

24 1:5 trapezoid

25 Triangle or 3%/4? quadrilateral

26 House with 3:5 trapezoid roof

27 Any 3 triangles stuck together or
3:6 trapezoid

28 6:8 trapezoid

29 A tree regular heptagon seven:2
triangles on a stump (see fig. 12)

30 Hexagon: two 1:4 trapezoids

VOL 2, NO. 3 - JANUARY 1997

153



(Continued from page 153)

Figures 10-12 show various solutions for thirteen,
twenty-two, and twenty-nine students, respectively.
Another possibility is to have an advanced class de
sigm a brownie for another class, since a significant
amount of mathematics is involved in the construc-
ton of the brownie. | have never auempted this
idea, so | cannot say to what extent it is possible. My
guess is that it would be quite difficult. even {or high
school students.

I hope | have convinced readers to underiake this
project. It does require some effort by the instructor.,
but the reaction of the students made this effort well
worth the work.

Fig. 12 A realization of the tree brownie suggested in table 1
for twenty-nine students. This figure is only roughly drawn to
scale. Computation of exact lengths would require calcula-
tions involving cos (2x/7).
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Fig. 11 A realization of the octagonal brownie suggested in

table 1 for twenty-two students Fan, C. Kenneth (January, 1997). Areas and Brownies. Mathematics
Teaching in the Middle School, 2 (3), 148-160.
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