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INTRODUCTION

We encounter patterns all the time, every day: in the spoken and
written word, in musical forms and video images, in ornamental design
and natural geometry, in traffic patterns, and in objects we build. Our
ability to recognize, interpret, and create patterns is the key to dealing
with the world around us.

Shapes are patterns. Some shapes are visual, evident to everyone:
houses, snowflakes, cloverleafs, knots, crystals, shadows, plants. Others,
like eight-dimensional kaleidoscopes or four-dimensional manifolds, are
highly abstract and accessible to very few.

“The increasing popularity of puzzles and games based on the in-
terplay of shapes and positions illustrates the attraction that geometric
forms and their relations hold for many people,” observed geometer
Branko Griinbaum. “Patterns are evident in the simple repetition of a
sound, a motion, or a geometric figure, as in the intricate assemblies of
molecules into crystals, of cells into higher forms of life, or in count-
less other examples of organizational hierarchies. Geometric patterns
can serve as relatively simple models of many kinds of phenomena, and
their study is possible and desirable at all levels.”

But despite their fundamental importance, students learn very little
about shapes in school. The study of shape has historically been sub-
sumed under geometry (literally “earth measurement”), which for a long
time has been dominated by postulates, axioms, and theorems of Euclid.
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Just as Shakespeare is not sufficient for literature and Copernicus is
not sufficient for astronomy, so Euclid is not sufficient for geometry.
Like scholars in all times and places, Euclid wrote about the concepts
of geometry that he knew and that he could treat with the methods
available to him. Thus he did not write about the geometry of maps,
networks, or flexible forms, all of which are of central importance today.

Shape is a vital, growing, and fascinating theme in mathematics with
deep ties to classical geometry but goes far beyond it in content, mean-
ing, and method. Properly developed, the study of shape can form a
central component of mathematics education, a component that draws
on and contributes to not only mathematics but also the sciences and
the arts.

Like many other important concepts, “shape” is an undefinable term.
We cannot say precisely what “shape” means, partly because new kinds
of shapes are always being discovered. We assume we know what shapes
are, more or less: we know one when we see one, whether we see it with
our eyes or in our imaginations.

But we know much more than this. We know that shapes may be alike
in some ways and different in others. A football is not a basketball, but
both are smooth closed surfaces; a triangle is not a square, but both are
polygons. We know that shapes may have different properties: a triangle
made of straws is rigid, but a square made of straws is not. We know
that shapes can change and yet be in some way the same: our shadows
are always our shadows, even though they change in size and contour
throughout the day.

In the study of shape, our goals are not so very different from those of
the ancient Greek philosophers: to discover similarities and differences
among objects, to analyze the components of form, and to recognize
shapes in different representations. Classification, analysis, and repre-
sentation are our three principal tools. Of course, these tools are closely
interrelated, so distinctions among them are to some extent artificial. Is
symmetry a tool for classifying patterns or a tool for analyzing them?
In fact, it is both. Nevertheless, it is helpful to discuss each of these
tools separately.

CLASSIFICATION

One of the great achievements of ancient mathematics was the discov-
ery that there are exactly five convex, three-dimensional shapes whose
surfaces are composed of regular polygons, with the same number of
polygons meeting at each corner. These shapes, known as the regular
polyhedra, are shown in Figure 1. This discovery so excited the imag-
ination of the ancients that Plato made these shapes the cornerstone
of his theory of matter (see his dialogue Timaeus), and Euclid devoted
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FIGURE 1. The five regular polyhedra. Each is composed of a single type of regular
polygon, with the same number of polygons meeting at each corner. The tetrahedron,
octahedron, and icosahedron are made of triangles, the cube is made of squares, and the
dodecahedron is made of pentagons.

much of Book XIII of his Elements to their construction. They have
lost none of their fascination today.

It is easy today to underestimate the significance of the discovery of
the regular polyhedra. In its time it was a major feat of mathematical
imagination. In the first place, in order to count the number of ob-
jects of a certain kind you have to be aware that they are “of a certain
kind.” That is, you must recognize that these objects have properties
that distinguish them from other objects and be able to characterize
their distinguishing features in an unambiguous way. Second, you must
be able to use these criteria to find out precisely which objects satisfy
them. No one knows just how the ancients made their discovery, but it
is easy for young children today, especially if they have regular polygons
to play with, to convince themselves that the list of regular polyhedra is
complete (Figure 2).

The key ingredients of mathematical classification were already in use
thousands of years ago: characterizing a class of objects and enumerat-
ing the objects in that class. What has changed throughout the centuries,
and will continue to change, are the kinds of characterizations that seem
important to us and the methods that we use for enumeration. Figure
3 shows several classes of objects that can be grouped together from
a mathematical point of view. Examples such as these can stimulate
student discussion: What properties characterize each class? Are there
different ways to classify these objects? What other objects belong to
these classes? We mention here a few of the classification schemes that
have proved effective in many applications.

Congruence and similarity. Two objects are congruent if they are ex-
actly alike down to the last detail, except for their position in space.
Cans of tomato soup (of the same brand) in a grocery store, square tiles
on a floor, and hexagons in a quilt pattern are all familiar examples
of congruent figures. Two objects are similar if they differ only in po-
sition and scale. Similarity seems to be a very fundamental concept.
Preschoolers understand that miniature animals, doll clothes, and play
houses are all small versions of familiar things. The fact that even such
young children know what these tiny objects are supposed to represent
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FIGURE 2. There are only five regular polyhedra because there are only five arrange-
ments of congruent, regular polygons about a point that can be folded up to make a convex
polygonal vertex. Here we see the five arrangements, together with their completion as
patterns that can be folded up to make the entire polyhedron.

shows that they intuitively understand change of scale. Building and
taking apart scale models of towers, bridges, houses, shapes of any kind
give the child—of any age—a firm grasp of this idea.

Symmetry and self-similarity. A square is symmetrical: if you rotate
it 90°, 180°, 270°, or 360° about its center, it appears unchanged. Also,
it has four lines of mirror symmetry across which you can reflect it onto
itself (Figure 4). It is easy to think of other objects that have the same
symmetries, or self-congruences, as the square: the Red Cross symbol,
a bracelet with four equally spaced beads, a circle of four dancers, and
a four-leaf clover (without its stem) are a few examples. Symmetry
classifies objects according to the arrangement of their constituent parts.

SHAPE 143

1<

FIGURE 3. Examples of solid objects grouped into useful classes.
What do the shapes in each class have in common?

This can be rather subtle; for example, the two polyhedra in Figure 3b
have the same symmetries.

Just as congruence leads to symmetry (which is just another name
for self-congruence), so similarity extends naturally to self-similarity.
“The basic fact of aesthetic experience,” according to art historian E.H.
Gombrich,? “is that delight lies somewhere between boredom and con-
fusion.” Perhaps this is one of the reasons why fractals and other self-
similar figures are generating so much excitement.

“Beauty is truth, truth beauty,” wrote the poet John Keats. Self-
similarity has recently been recognized as a profound concept in nature.
The awarding of a Nobel prize for the formulation of “renormalization
groups” and the current worldwide cross-disciplinary interest in chaos
theory indicate the profound implications of similarity and scale for
science and mathematics. The study of scaling has stimulated (and been
stimulated by) the study of fractals and other self-similar geometrical
forms.

Combinatorial properties. Congruence and similarity are metric con-
cepts: they can be altered by changing lengths or angles. But some other
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