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algebraic problem solving. Several very powerful computer programs do symbolic
algebraic manipulations in response to such standard commands as SOLVE, FAC-
TOR, EXPAND, and so on. These programs have many of the same implications
for elementary algebra as hand-held calculators for arithmetic—diminishing the
importance of procedural skill and highlighting the importance of problem formu-
lation, estimation, and interpretation of results. Thus the traditional procedural part
of algebra is, especially for students of modest ability, far less significant than the
ability to construct and interpret algebraic representations of quantitative relations.
Nonetheless, the importance of learning algebraic procedural skills can be argued
in several ways.

Number Systems and Properties

In standard elementary school mathematics curricula, students meet and master
properties of the whole-number and positive-rational-number systems. Not until the
study of algebraic ideas are the properties and operations of negative and irrational
numbers thoroughly developed. Although much of the factual and relational
information in a quantitative problem can usually be modeled by use of positive
numbers only, it is becoming increasingly common in computer-based systems to
use negative numbers to represent inputs and outputs for model calculations. Thus
the ability to interpret negative numbers representing business losses, time prior to
a space-shuttle launch, position below sea level, and many other “opposite”
quantities is useful. When these situations are being modeled by a computer system,
it is not sufficient for a user to assume that the machine will “know what I mean.”
Data must be entered in a manner consistent with the modeling assumptions, and
operations must be specified in the order that will produce intended results.

The conventional motivation for studying irrational numbers is the fact that the
Pythagorean theorem leads to calculations involving square roots. For average and
low-ability students, it is not at all clear that this fact of mathematical life justifies
a full-blown treatment of radicals, fractional exponents, and so on. However, it
seems, at a minimum, worth demonstrating numerically and then mentioning the
fact that numbers like the square root of 2 and pi can only be approximated by
decimals or common fractions like 1.414 and 22/7 and that the degree of accuracy
required is a function of the demands of the particular situation. For instance, if one
is designing a support wire for a 100-meter radio antenna, it will be sufficient to use
approximations like 1.73 for the square root of 3. But in planning space travel to the
moon, one could land far off the mark when using 22/7 for pi .

The key objective in teaching about negative and irrational numbers should be
developing students’ ability to set up and interpret mathematical models where
those numbers are needed—not facile operations of arithmetic with these quantities.
However, the analysis of number-system properties that is also a normal part of
algebra has some significant payoffs in arithmetic calculation. In the quantitative
reasoning tasks for which students are being prepared by school mathematics, most
arithmetic computations will be done with the help of a calculator or computer.
Despite this condition, nearly everyone in mathematics education has urged
increased emphasis on the mental computation needed in estimation and approxi-
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mate calculations that guard against errors of data entry or machine computation.
The structural properties of number systems are enormously helpful in this approxi-
mate calculation.

Example
Properties of signed numbers permit rearrangements for easier calculations, as
shown:
50-23-34+75-18=(50+75)-(23 + 34 + 18)
=125-75
=50

Example

For students who have learned arithmetic algorithms in a very rote fashion,
revealing power is found in simple applications of the distributive property, as
in the following derivation of a formula for compound interest on $500 invested
at 8% annual interest:

500 + (.08 x 500) = (1 x 500) + (.08 x 500)
= (1 +.08) x 500
=1.08 x 500
=540
In exactly the same way, students can see that

540 + (.08 x 540) = (1 x 540) + (.08 x 540)

= (1.08) x 540
= (1.08) x (1.08) x 500 [540 = 1.08 x 500]
= (1.08)%x 500,
and so on.
Example

Number-system properties and signed-number operations are the bases of other
computational shortcuts, like the following quick estimate for an arithmetic
mean:

The mean of 45,52,60, 48, and 68 appears to be about 55. To test this estimate,
calculate as follows:

45-55=-10

52-55=-3 (-13)
60-55=5 (-8)
48 -55=_7 (-15)
68 -55=13 (<2)

So the true mean is 55 + (-%).

Of course, if these and other computational shortcuts are used carelessly or
remembered poorly, they are invitations to fatal errors. This fact argues for an
approach that bases each proposed shortcut on the clear understanding of number-
system properties that is part of algebra.
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Manipulations Done Easier by Hand

As a practical matter, people who use algebra for quantitative modeling and
problem solving in the future will undoubtedly rely on computer assistance for
much of the symbolic manipulation that has been the heart of the traditional course.
However, some situations are certainly so simple in structure that doing the
manipulation by hand (perhaps with calculator assistance for the related arithmetic)
is far more efficient than looking for a suitable machine. Furthermore, in those
simple situations, developing the procedural skills required to solve equations or
inequalities can be done in a way that strengthens understanding of the relational
form and its use as a model.

Among the family of algebraic forms that students are expected to master in a
traditional course, those that meet the “easier by hand” criterion certainly include—

1. linear equations and inequalities of the form
ax+b=candax+b<c,

2. quadratic equations and inequalities of the form
ax’+b=candax?+b<c;

3. rational equations of the form
% =band % =b.

Linear equations and inequalities of the type described here include a vast
majority of practically occurring situations in which linear relations are appropriate
models of quantitative relations. Furthermore, the procedure for solving such linear
equations can be naturally related to the operations on quantities being modeled by
the function f{x) = ax + b.

Example
The cost of membership in a video club includes an annual fee of $15.00 plus
$2.50 for each cassette rented for one day. Thus the annual cost is given by the
function C(n) = 15 + 2.50n , where n is the number of cassette rental days used
during a year. To answer a question like “How many cassette rental days can be
used to keep annual cost under $200?” one must solve the inequality
15 + 2.50n < 200.00.

To solve this problem one must reverse the sequence of operations needed to
calculate cost from number of rental days, that is, find (200 — 15)/2.50.

The solving procedure follows naturally from the procedure for calculating
output values from input values of n.

The quadratic cases listed in the foregoing provide some important practical
models, too.
Example
If a ball is dropped from a tower that is 100 meters tall, its height after ¢ seconds
is given by the function () = —4.92 + 100.
To answer a question like “When will the ball hit the ground?” it is necessary to
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solve the equation —4.9¢2 + 100 = 0. In working backward from desired output
to required input ¢, we find that the steps are identical to the linear case until we
arrive at 1 = 20.408.

Solving this equation requires an understanding of the squaring operation and
one push on the calculator’s square-root button. Again, the solution process
reinforces the understanding of the procedure for calculating outputs from inputs
for this function rule.

Although this form of quadratic does not cover all important quadratic relations,
it has the virtue of building on the linear case and revealing the multiple-root
behavior of quadratics. Furthermore, the methods for solving full quadratic equa-
tions hardly meet the criterion of “easier by hand,” particularly for less able
mathematics students.

Example

When sound emanates from the speakers of arock band, its intensity diminishes
with distance according to a function rule of the form I(d) = a/d?, where intensity
is in watts per meter squared and distance is in meters.

To answer a question like “If a sound measures 0.2 watts per meter squared one
meter from its source, at what distance will it be reduced to 0.004 watts per meter
squared?” one must solve the equation 0.2/d*> = 0.004. Again, reversing the
“input to output” procedures reveals the answer, d =\/5 .

This example and many others like it cover the very important family of
situations modeled by inverse variation. In addition to this sound-intensity setting,
inverse variation occurs frequently in natural phenomena like light intensity,
gravitational attraction, and “time as a function of rate” problems where some
distance is to be traveled or a job is to be completed. As with the previous linear and
quadratic examples, the procedures required are simple.

For any students who are studying algebra, even those of limited mathematical
ability, it seems reasonable to argue that the few basic symbolic forms identified
here are among those for which procedures that can be executed “by hand” are
important to learn. Because they occur very often, they are, in fact, generally easier
to solve by hand than by searching for a computer program with a SOLVE feature,
and learning the natural solution procedures illuminates the structure of the
relations being modeled.

The reader will notice that we have not suggested the typical symbol-manipu-
lation procedures based on meticulous application of number-system features like
the associative, commutative, distributive, inverse, and identity properties. For
almost all algebra students this sort of formal approach to equation solving,
although generalizable to cases of considerably greater complexity, quickly be-
comes just that—a formal exercise that seems to have little to do with the practical
business of using algebra to model situations and solve meaningful problems. It
does not seem important in presentation of elementary algebraic concepts and
methods to students of modest ability and interest.
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Algorithmic Methods

The study of school geometry is often supported by arguments that it develops
students’ logical reasoning ability. Algebra is seldom given the same kind of
endorsement, but we have some reasons to believe that certain general habits of
thought required in algebra might carry over to a broader range of intellectual tasks.
For example, algebraic notation is among the most abstract, efficient, and powerful
systems for expressing information. However, it also demands absolute precision
inits use. Ithas none of the redundancy built into ordinary language, so itencourages
care in expression and manipulation of ideas. This habit of carefulness is especially
useful in the broad array of situations in which mechanical or computer systems are
used as tools in some specific job or career. Although many such systems are now
designed to help human users avoid dramatic errors, a miscue as simple as pressing
the wrong key on an automated supermarket check-out system can produce
troublesome difficulties.

In addition to the requirements for precision of expression, the variety of
problem-solving procedures that constitute much of elementary algebra are illustra-
tive of a general trait that characterizes methods of automated systems. The systems
that dispense tickets to subway passengers, check out books for library users, send
bills and statements to credit-card and bank customers, and control the flow of parts
in a manufacturing process all follow precisely defined rules of operation called
algorithms. In the daily life of contemporary society, many jobs require the ability
to design those algorithms. Many more require working with good judgment
alongside algorithm-driven automated systems, and nearly everyone encounters
such systems as aconsumer. When systems function as expected, they are notreally
even noticed; but when something goes wrong, some general understanding of how
systems are run by algorithmic procedures will make the detection of flaws and their
correction much easier tasks.

If algebraic procedures are taught with the proper attention to their place in the
broader family of algorithmic methods—emphasizing the usually critical impor-
tance of order and precision and the fatal effects of even small errors—it seems quite
possible that students of even modest mathematical ability can gain valuable
insights into the way many systems that they will use and depend on are designed
and function. Thus studying procedural aspects of algebra with even modest levels
of complexity offers some impressive opportunities for development of important
general thinking habits and skills.

Historical Perspective

As with algebraic representation, the history of efforts to develop algebraic
procedures for quantitative problem solving contains a number of interesting and
impressive themes. Showing students something of the outline of this story should
help to illuminate the basic goals and fundamental difficulties in procedural
thinking in algebra.

Forinstance, in early Babylonian mathematics—without the benefit of symbolic
notation or signed numbers—solution procedures to verbally stated equations had
to be described in prose sentences. During the golden age of Greek mathematics,
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solving an equation meant devising a straightedge-and-compass geometric con-
struction of the required magnitude. In the Middle Ages, mathematicians competed
with each other in solving equations that are now routine tasks; each specific
equation with its particular coefficients was seen as a new problem because the
general reasoning methods that we take for granted had not been abstracted and
validated.

Although this long and difficult path to the powerful contemporary methods of
algebra is not itself important for students to know, the telling of that story might,
for some students, help convey the significance of the intellectual achievement that
modern algebra represents.

SUMMARY

Algebra is clearly the backbone of secondary school mathematics. It furnishes
concepts and symbolic conventions for representation of very important informa-
tion in situations that affect each of us in obvious and subtle ways every day.
Understanding of some basic ideas underlying that style of representing or model-
ing quantitative information is now a critical prerequisite for entry into many
careers and for effective life in dealing with the quantitative-information systems
that impinge on everyday affairs.

The procedural methods of algebra—the rules for transforming symbolic
representations into equivalent but simpler patterns—are also widely used in the
pervasive rule-driven systems that we see all around us. Although computerization
makes many traditional, by-hand methods of symbolic manipulation less important
for all (and certainly for less quantitatively able students), some important general
lessons about precision of expression and algorithmic thinking can emerge from
experience with learning algebraic methods.

Many sources are available from which teachers can draw examples illustrating
the usefulness of elementary algebra. We list in the Bibliography only a few of the
books from which ideas were drawn for this paper.
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