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INTRO 
 
Pardis Sabeti 
Hello, I’m Pardis Sabeti and this is Against All Odds, where we make statistics 
count. 
 
Sometimes, when you look at the outcome of a particular study, it can be hard to 
tell just how noteworthy the results are. For example, if the severe injury and 
death rates due to car crashes on one state’s roads dropped from 4.7% down to 
3.8% after enacting a seat belt law…would we think of this as a significant 
change? It’s certainly a lower rate, but how do we know this is due to the seat 
belt law, and not just chance? 
 
We can clarify results like these by using something called Tests of Significance. 
This tool is one of the most widely used in statistical inference, as it can tell us if 
a result is likely due to chance, or if there’s something else at work.  
 
Significance testing can be applied in a variety of circumstances. Let’s explore 
how researchers used it to help solve a controversy in a field of study you might 
not associate with statistics – classic literature.  
 

Shakespeare Professor 
Shall I fly 
Lovers’ baits and deceits, 
sorrow breeding? 
 

Pardis Sabeti 
“What’s in a name?” Well, if you think you’ve discovered a long-lost 
Shakespearean sonnet, a name is everything. In 1985, scholar Gary Taylor was 
conducting research for a new book of the Complete Works of William 
Shakespeare. While at the Bodleian Library at Oxford University, he came upon 
a sonnet he had never seen or heard of before. You can imagine his surprise 
when he saw “William Shakespeare” written underneath it. 

 
Gary Taylor 
What matters about the poem is that at the bottom of it is written ‘William 
Shakespeare.’ It’s attributed to him. And this is clearly written in the same 
ink and at the same time as the rest of the poem. 
 

Pardis Sabeti 
Obviously, Taylor was excited about his find and eager to include it in the new 
edition of the Complete Works. But first, he and his colleagues publicized the 
work to see if any scholars could disprove the validity of the discovery. 
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It produced a storm of literary controversy. Some scholars were thrilled about the 
first new Shakespeare find since the 17th century. Others were more skeptical 
and called the poem “second-rate hack-work” and “a piece of doggerel.” 
 
But aside from pondering the stylistic merits of the poem, was there any other 
way to determine whether Shakespeare did or did not write it? Statistics to the 
rescue! 
 
A decade earlier, statistician Ron Thisted had done a statistical analysis of 
Shakespeare’s vocabulary. He and his colleague wanted to determine how many 
words did Shakespeare know, but never use? Until Taylor’s 1985 discovery, 
Thisted had thought this analysis was purely an academic exercise. 
 

Ronald Thisted 
We certainly had no expectation that we would ever be able to put our 
mathematical description of Shakespeare to any use, after all, there had 
been no new Shakespeare discovered for several hundred years and 
there was no prospect of any new Shakespeare being discovered. And so 
for us, it was – Shakespeare was really an interesting illustration of the 
basic statistical ideas that we developed. 

 
Pardis Sabeti 
Thisted’s program provided a detailed, numeric description of Shakespeare’s 
vocabulary. From here, they could address the authorship question.  For every 
work, Thisted could tell how many new words there are that Shakespeare didn’t 
use anywhere else, as well as how many words he had used only one other time, 
two other times, and so on. Using this model, Thisted predicted that if 
Shakespeare had written the poem in question, it would have seven unique 
words in it. However, when they ran the poem through the program, they found 
that there were ten unique words. 
 
Did this difference reflect random variation within Shakespeare’s writing? Or did it 
indicate that Shakespeare wasn’t the author? This is when significance testing 
can really come in handy. 
 
Thisted began with what we call a null hypothesis – written as H0 – that basically 
means nothing unusual is happening. In this case, the null hypothesis was that 
Shakespeare wrote the poem.  Then Thisted formulated an alternative 
hypothesis, written as Ha. His alternative hypothesis was that someone else 
besides Shakespeare wrote the poem. That would mean the difference between 
the observed number of unique words – 10 – and the predicted number of unique 
words – 7 – wasn’t due to chance but rather to another author writing the poem, 
using his or her own idiosyncratic vocabulary. Researchers aim to reject the null 
hypothesis with evidence that suggests something more is going on other than 
random variation. 
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Ronald Thisted 
Now, the question then, is that three-word difference a big difference? Or 
a small difference? And we – the way to answer that question is to 
compare the difference to some measure of how much variability there 
would be from one poem to another of this size. That’s the information the 
standard deviation gives you, and the standard deviation of about 2.6 here 
says that the difference we’ve observed is slightly more than one standard 
deviation on the high side. Which is, in itself, not very different. It’s within 
the range of variability we expect to see.   
 

Pardis Sabeti 
Thisted assumed the number of unique words in Shakespeare’s poems has an 
approximately Normal distribution with a mean of 7 and a standard deviation of 
2.6, which they calculated from the data they had on all known poems. This 
density curve illustrates the percent of area that corresponds to a number as 
extreme as 10, which is 3 away from the mean of 7. Since this difference 
between the observed and expected is just over one standard deviation, Thisted 
could expect to find a value as extreme as 10 unique words about 25% of the 
time. Therefore, Thisted failed to find significant evidence against the null 
hypothesis that Shakespeare actually wrote the poem. They could not reject H0, 
that Shakespeare composed these lines. 
 

Shakespeare Professor 
Yet I must vent my lust,  
And explain inward pain… 

 
Pardis Sabeti 
It’s important to understand that this does not mean that Shakespeare definitely 
wrote the poem. It only fails to give sufficient evidence to the hypothesis that he 
did not write the poem. 
 

Ronald Thisted 
What we could have hoped for, perhaps, was that such a bad poem would 
have been clearly non-Shakespearean. In which case we could have 
disproven the Shakespeare hypothesis. But, like a paternity test, it can 
only rule out…it can’t rule in. 

 
Pardis Sabeti 
Taylor’s own analysis of the stylistic similarities between the newly discovered 
work and Shakespeare’s established canon also failed to disprove the null 
hypothesis. 

Gary Taylor  
We have historical evidence that says it’s by Shakespeare. And so in a 
way the burden of proof is on the people who want to say it isn’t by 
Shakespeare, because they have to contradict that early 17th century 
witness. All that the supporters of Shakespeare’s authorship have to do is 
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to prove in as many ways as they can, as many different tests as they can, 
that this could be by Shakespeare and therefore there’s no strong reason 
to doubt what the witness says. 
 

Pardis Sabeti 
In the absence of literary or statistical evidence against Shakespeare’s 
authorship, the poem was published in Taylor’s edition of The Complete Works.  
Let’s take a closer look at how Significance Testing was able to help solve this 
Shakespearean mystery.   
 
Since we want to work with sample means, let’s suppose researchers found a 
folio of five new poems that were attributed to Shakespeare. Instead of a single 
count of the number of new words in one poem, we would want to find the 
average number of new words for the five poems. 
 
We’ll say the average number of new words was 8.2 per poem. We know from 
Thisted’s research into Shakespeare’s collected works that the mean number of 
new words in poems of this length is 7. But our sample mean, “x-bar,” is 8.2. We 
want to know if, based on this evidence, we can conclude that Shakespeare 
didn’t write these poems. 
 
Our null hypothesis is that Shakespeare did write these poems. In other words, 
we’ll assume that our result of 8.2 new words is nothing more than the normal 
variation within Shakespeare’s writing. To state our null hypothesis numerically, 
we’ll express it in terms of the population mean. Our null hypothesis states that 
the mean of the whole population from which the sample was drawn equals 7 
unique words. We know that is true for all Shakespeare’s published works. 
 
The alternative hypothesis states that the population mean is NOT equal to 7. 
This essentially says that we suspect another author wrote the poems. 
 
Something to keep in mind when setting up a significance test is whether to use 
a one-sided or two-sided Alternative Hypothesis. In our Shakespeare example, 
we’re using a two-sided alternative hypothesis because a different author might 
consistently use either more or fewer unique words than Shakespeare. But 
suppose we suspected the poem was written by a particular author who was 
known to consistently use more new words than Shakespeare. Then the 
alternative hypothesis would be one-sided, expressed as Ha: mu > 7 
 
We begin by assuming the null hypothesis is true. Then we find the probability of 
getting a result as extreme as ours if the null hypothesis really is true.  When the 
probability is small, we reject the null hypothesis and accept the alternative 
hypothesis as plausible. 
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How do we find this probability? We go back to the distribution of a sample mean 
“x-bar.” Here’s the distribution of the number of new words in a Shakespeare 
poem. It’s Normal, with a mean of 7 and a standard deviation of 2.6. 
 
If we form the distribution of “x-bar” for samples of 5 poems, the mean is still 7 
and the curve is still normal. But because we’re now looking for the standard 
deviation of the sample mean, sigma is calculated by this equation. That means 
the standard deviation for the sampling distribution is smaller than for the whole 
population, as you can see when we compare the two curves. The distribution for 
average number of unique words per poem from our sample of 5 poems is less 
variable than the distribution for new words in all the individual poems. So the 
standard deviation is now 2.6 over the square root of 5, or 1.163.  
 
The mean of our five mystery poems is here, at 8.2. We want to find the 
probability that any sample of five Shakespeare poems would have an “x-bar” at 
least that far, or farther, in either direction from 7.  
 
That’s an “x-bar” above 8.2, or below 5.8. Remember, we want the probability in 
both directions because our Alternative Hypothesis is two-sided. 
 
You already know how to do this probability calculation: we standardize the 
distribution of “x-bar” to obtain the familiar z. We call z the test statistic. The z-
score of “x-bar” is essentially the distance from the hypothesized mean, 
measured in standard deviations. 
 
The ingredients of z are the observed “x-bar”, the population mean mu given by 
the null hypothesis, the standard deviation of the population, and the sample 
size. We just plug in the numbers. 
 
“x-bar” is the sample mean of our five poems, 8.2.  
 
Mu is the population mean of 7 for all of Shakespeare’s known poems. 
 
The standard deviation is 2.6 and the sample size is 5.  
 
So our z is 1.03, a little bit more than one standard deviation away from the mean 
on the standardized Normal curve. That’s our observed value of our test statistic. 
 
The final step in our Test of Significance is to find the probability of a z at least 
this extreme. This probability is called the p-value.  
 
To find this p-value we use the value of z that we just calculated, 1.03. 
Consulting the z-table we can see that the area under the curve below 1.03 is 
.8485. 
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This means that .1515 is left in the tail. To find our p-value we double this value 
because we’re interested in the area under both tails of the curve. Our final 
result, .303, is the p-value we’ve been looking for. 
 
So there’s a .303 or 30.3% chance that random variation would produce a mean 
unique word count as far from 7 in either direction as 8.2 is. 30.3% is a pretty 
good chance – we could expect a result like that almost once every three times. 
This means we’ve failed to disprove the null hypothesis and did not find good 
evidence against Shakespeare’s authorship of these new poems. 
 
This example helps illustrate the general rule about p-values: Small p-values give 
evidence against the null hypothesis, while large p-values fail to reject the null 
hypothesis.  
 
Think about it…if we had gotten a smaller p-value, say .04, that would mean 
there was only a 4% chance that 5 poems by Shakespeare would produce an 
average number of unique words this far from his usual 7. That’s a pretty small 
chance, so we would have good reason to suspect that something else was at 
work – namely, a different author. 
 
As you can imagine, p-values can range from the very small – close to zero – to 
the very large – close to one. So researchers are faced with a dilemma: is there a 
particular p-value that gives enough evidence to reject the null hypothesis? If we 
have a result of 1 in 1,000 it’s pretty easy to see that the null hypothesis is likely 
wrong. But what about 1 in 100? Or 1 in 50?  
 
Because this is such a common problem, several fixed p-values are often used. 
One of the most common values is .05 or 5%. This would mean that a result 
would be likely to occur only 5% of the time if the null hypothesis is true. If 
something is statistically significant at the 5% level, it means that the results 
produced a p-value less than .05, and were therefore significant. Another widely 
used level is .01. This would mean that a result would be likely to occur only 1 
time in 100.   
 
It’s important to pick a p-value that’s appropriate to the situation. For example, if 
we were doing research on a new cancer therapy, because of the health 
consequences for the patients, we might decide that a .05 p-value wasn’t good 
enough. We might then decide that our results are only significant if they reach a 
.01 p-value or even .001. 
 
You may not have expected your English homework to come creeping into your 
statistics lessons, but as we’ve seen here, significance testing can be useful in 
just about any subject. And though you might think parting with this topic is such 
“sweet sorrow,” don’t worry, tests of significance will keep turning up in future 
modules that use inference. 
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So stay tuned! I’m Pardis Sabeti for Against All Odds. 
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