1	00:03:53:26	00:03:57:08	Annenberg Media
2	00:03:57:10	00:04:49:05	§
3	00:04:49:07	00:04:50:20	OUR PLANET IS TEEMING
4	00:04:50:22	00:04:53:11	WITH A TREMENDOUS
		DIVERSITY O	F LIFE FORMS.
5	00:04:53:13	00:04:57:00	AND EACH YEAR MANY NEW
		SPECIES ARE	EDISCOVERED.
6	00:04:57:02	00:04:58:16	THERE IS MUCH TO LEARN
7	00:04:58:18	00:05:00:14	ABOUT HOW THIS
		LIVING WORL	.D EVOLVED.
8	00:05:00:16	00:05:02:15	YET FOSSIL EVIDENCE
		OF EARLIEST	LIFE
9	00:05:02:17	00:05:04:29	SUGGESTS A WORLD
		ONCE DOMIN	IATED
10	00:05:05:01	00:05:06:15	BY MICROSCOPIC
-		ORGANISMS.	
11	00:05:06:17	00:05:09:00	HOW THE PRESENT
		VARIETY OF I	LIFE
12	00:05:09:02	00:05:10:17	EVOLVED THROUGH TIME
13	00:05:10:19	00:05:13:08	REMAINS ONE
-		OF THE MOS	T INTRIGUING ISSUES
14	00:05:13:10	00:05:14:27	IN SCIENCE.
15	00:05:16:24	00:05:18:05	THIS IS ALGAE.
16	00:05:18:07	00:05:20:20	ONE OF THE SIMPLEST
		ORGANISMS (ON EARTH.
17	00:05:20:22	00:05:23:07	AND IT'S BEEN AROUND
••	00100120122	AN EXTREME	Y LONG TIME.
18	00:05:23:09	00:05:24:22	FROM FOSSIL EVIDENCE.
19	00:05:24:24	00:05:27:06	WE KNOW THAT ALGAE
		HAS BEEN ON	EARTH
20	00:05:27:08	00:05:29:00	ATLEAST
	00100121100	1.8 BILLION YE	EARS.
21	00:05:29:02	00:05:30:22	OLDER AND MORE
	00100.20102	PRIMITIVE OR	GANISMS
22	00:05:30:24	00:05:33:29	HAVE BEEN FOUND IN ROCKS
	00.00.00.2	FROM ALL OV	FR THE WORLD
23	00.02.34.01	00.05.35.09	THE PROBABLE
20	00.00.01.01	FOSSIL REMA	INS
24	00:05:35:11	00:05:37:08	OF BLUE-GREEN ALGAE
		AND BACTERI	Α
25	00.02.32.10	00.05.38.25	HAVE BEEN FOUND IN ROCKS
26	00:05:38:27	00:05:40:07	NFARLY 3 BILLION
20	00.00.00.21	YEARS OLD	
27	00.02.40.09	00.05.41.22	IN AUSTRALIA AFRICA
28	00:05:41:24	00:05:44:02	AND EVEN HERE
20	00.00.41.24	IN NORTH AM	FRICA
29	00.02.44.04	00.05.46.18	THE STUDY OF FOSSILS
20	00.00.44.04	44S ENARI ΕΓ	SCIENTISTS
30	00.02.48.20	00.02.40.02	
50	00.03.40.20		PLANTS AND ANIMALS
31	00.02.40.04	00.05.51.05	
51	00.00.43.04		
32	00.05.51.07	111E EAR 111. 00:05:53:20	
52	00.00.01.07		
33	00.05.53.33		
55	00.00.00.22		GINS

34	00:05:55:28	00:05:57:25 SCIENTISTS HAVE
05	00 05 57 07	
35	00:05:57:27	00:06:00:24 TO FILL OUR GAPS OF KNOWLEDGE IN LIFE'S HISTORY
36	00.06.00.36	
37	00.00.00.20	
57	00.00.02.23	
20	00.06.04.22	
30	00.00.04.23	
20	00.00.00.07	
39	00:06:08:07	
40	00:06:09:22	00:06:12:20 IN THE FUSSILIZED
	~~ ~~ ~~ ~~	REMAINS OF PAST LIFE.
41	00:06:12:22	00:06:15:20 FOSSILS CAN BE FORMED
		IN SEVERAL WAYS.
42	00:06:15:22	00:06:18:11 AFTER SOME ORGANISMS DIE,
43	00:06:18:13	00:06:21:06 THEY ARE QUICKLY BURIED
		BY SEDIMENT.
44	00:06:21:08	00:06:23:06 AS THE SEDIMENT
		TURNS TO STONE,
45	00:06:23:08	00:06:25:00 THE REMAINS DECAY
		OR DISSOLVE,
46	00:06:25:02	00:06:28:00 AND A HOLLOW CAVITY
		CALLED A MOLD
47	00:06:28:02	00:06:29:16 IS LEFT BEHIND.
48	00:06:29:18	00:06:32:13 MOLDS ARE AMONG
		THE MOST COMMON FOSSILS.
49	00.06.35.12	00.06:35:14 BUT OTHER TYPES
	00.00.02.10	ALSO OCCUR IN ABUNDANCE
50	00.06.32.16	00:06:37:21 BURIED BONE
00	00.00.00110	AND SHELL MATERIAL
51	00.06.32.53	00.06.41.00 MAY SURVIVE INTACT
51	00.00.07.20	WITHIN SEDIMENTARY ROCK
52	00.06.41.02	00.06.42.22 = EOR MILLIONS OF VEARS
52	00:06:42:24	
55	00.00.42.24	MATEDIAL ODVSTALLIZES
5 1	00.06.45.06	
04 55	00.06.45.00	
55	00.06.46.22	UU.U0.49.00 BY MINERALS DEPUSITED
50	00.00.40.40	
30	00:06:49:10	00:06:51:29 CASTS PRESERVING
	00.00.50.04	
57	00:06:52:01	00:06:53:21 OF THE ORGANISM RESULT.
58	00:06:53:23	00:06:56:05 LIKE MOLDS,
	~~~~~	CASIS ARE NUMEROUS.
59	00:06:57:12	00:06:58:25 EVIDENCE SHOWING
		THEACTIVITY
60	00:06:58:27	00:07:01:18 OF PAST ORGANISMS
		IS ALSO FOUND
61	00:07:01:20	00:07:05:10 IN THE FORM OF FOSSIL
		TRACKS, BURROWS, AND NESTS.
62	00:07:06:25	00:07:09:06 THAT FOSSILS EXIST
		AT ALL IS STARTLING
63	00:07:09:08	00:07:11:20 CONSIDERING THE VIGOROUS
		PROCESSES OF EROSION
64	00:07:11:22	00:07:15:03 AND PLATE TECTONICS ACTING
		ON EARTH'S SURFACE.
65	00:07:15:05	00:07:16:27 THE PRESERVATION

		OF FOSSILS
66	00:07:16:29	00:07:19:13 IS PROBABLY BEST
		IN THE OCEAN
67	00:07:19:15	00:07:22:12 WHERE YOU HAVE
•		A SUPERABUNDANCE
		OF ORGANISMS
68	00.07.22.14	
00	00.07.22.14	
~~	~~~~~~~~	
69	00:07:25:25	00:07:28:04 THAT CAN FALL
		TO THE SEA FLOOR,
70	00:07:28:06	00:07:30:22 MANY TENS OR EVEN
		HUNDRED OR THOUSANDS
71	00:07:30:24	00:07:32:19 MAY BE PRESERVED.
72	00:07:32:21	00:07:34:18 SO PROBABLY
		OUR BEST FOSSIL RECORD
73	00:07:34:20	00:07:36:18 COMES FROM MARINE
	00.07.10 1.20	SEDIMENTARY ROCKS
7/	00.07.36.20	
/4	00.07.30.20	
75	00.07.20.22	
75	00.07.36.23	
	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	PRESERVATION ARE BEST.
76	00:07:41:20	00:07:43:20 TERRESTRIAL LIFE,
		HOWEVER,
77	00:07:43:22	00:07:47:07 IS NOT AS DENSE
		AS IT IS IN THE OCEAN.
78	00:07:47:09	00:07:49:19 AND BECAUSE OF
		CHEMICAL WEATHERING
79	00:07:49:21	00:07:52:01 AND PREDATION,
		SCAVENGING, AND SO ON
80	00:07:52:03	00:07:53:18 BY OTHER ANIMALS
81	00.07.53.20	00:07:55:15 THE RECORD
01	00.07.00.20	
82	00.07.55.17	
02	00.07.33.17	
00	00 07 50 40	
83	00:07:58:19	00:08:00:09 THEREFORE,
~ .	~~ ~~ ~~ ~ ~ ~ ~	
84	00:08:00:11	00:08:02:28 THAT DOES SURVIVE
		FROM THE GEOLOGIC PAST
85	00:08:03:00	00:08:05:27 IS SKEWED TOWARD
		MARINE ORGANISMS.
86	00:08:05:29	00:08:09:03 OF THESE, ORGANISMS
		WITH BONES OR SHELLS
87	00:08:09:05	00:08:11:22 ARE MOST LIKELY
		TO BE FOSSILIZED.
88	00.08.11.24	00:08:13:08 ONLY RARELY
80	00:00:11:24	
05	00.00.10.10	
00	00.00.16.07	
90	00.06.16.07	ANOLAN ODO ANIONO
~ 1		
91	00:08:19:02	00:08:22:19 LACKING HARD PARTS
		HAVE FADED INTO OBSCURITY.
92	00:08:22:21	00:08:24:00 THERE ARE, HOWEVER,
93	00:08:24:02	00:08:26:12 A FEW SPECTACULAR
		EXCEPTIONS.

94	00:08:26:14	00:08:29:05 ONE OF THESE IS
<b>.</b> -	~~ ~~ ~~ ~~	STRUMATULITES.
95	00:08:29:07	00:08:31:13 THESE LUMPY ALGAL MATS
96	00:08:31:15	00:08:32:28 WERE THE DOMINANT
		LIFE FORM
97	00:08:33:00	00:08:34:22 THROUGHOUT MUCH
		OF EARTH'S HISTORY
98	00:08:34:24	00:08:37:22 BUT ARE NOW RESTRICTED
		TO A FEW SMALL AREAS
99	00:08:37:24	00:08:39:26 OF WARM SHALLOW WATER.
100	00.08.39.28	00.08.41.05 STROMATOLITIC ALGAE
100	00.08.41.07	
101	00.00.41.07	
100	00.00.42.14	
102	00.06.43.11	
400	~~ ~~ ~~ ~~	EARLY ATMOSPHERE
103	00:08:45:02	00:08:47:27 WITH IMPORTANT CONSEQUENCES
		FOR THE EVOLUTION OF LIFE.
104	00:08:47:29	00:08:49:18 FOSSIL STROMATOLITES
105	00:08:49:20	00:08:51:12 APPEAR AS PILLAR
		SHAPED LAYERS
106	00:08:51:14	00:08:53:19 OF SEDIMENTARY DEBRIS.
107	00:08:53:21	00:08:55:03 THE DEBRIS WAS TRAPPED
108	00:08:55:05	00:08:57:14 IN THE HAIR-LIKE
		FILAMENTS OF THE ALGAE
109	00.08.22.16	00.08.59.15 WHEN IT WAS STILL ALIVE
110	00.08.59.17	00.00.02.16 ALGAL TISSUE ITSELE
110	00.00.00.17	
111	00.00.02.18	$\frac{100000000}{10000} PALEORIOLOGIST$
	00.03.02.10	STANI EV AWRAMIK
112	00.00.02.11	
112	00.09.05.11	
115	00.09.00.27	UEE FORMS
111	00.00.00.16	
114	00.09.09.10	$00.09.10.20 \qquad WHOSE FOSSILS DATE DACK$
115	00.09.11.00	
440	~~ ~~ ~~ ~~	3.5 BILLIUN YEARS.
116	00:09:13:06	00:09:15:19 THIS AREA
		OF THE ALEXANDER HILLS
117	00:09:15:21	00:09:17:07 IN EASTERN CALIFORNIA
118	00:09:17:09	00:09:21:06 CONTAINS
		AN INTERESTING SEQUENCE
		OF STROMATOLITES.
119	00:09:21:08	00:09:23:22 HERE IN THE CRYSTAL
		SPRING FORMATION,
120	00:09:23:24	00:09:26:17 WE HAVE A SEQUENCE
		OF STROMATOLITES
121	00:09:26:19	00:09:28:13 WITH OTHER KINDS
		OF SEDIMENTS
122	00:09:28:15	00:09:30:26 THAT ARE RECORDING
		AN INTERESTING HISTORY
123	00:09:30:28	00:09:32:13 ON THE INTERPLAY
124	00.09.32.15	00.09.35.15 OF MICROORGANISMS
· - ·	30.00.02.10	AND SEDIMENT
125	00.00.36.33	
120	JU.UJ.UU.ZZ	STROMATOLITES
126	00.00.30.00	
120	00.00.00.00	WHEN THE MICROORGANISMS

127	00:09:42:14	00:09:45:05	WERE LIVING
		IN SHALLOW V	VATER,
128	00:09:45:07	00:09:47:14	TRAPPING AND BINDING
		THE SEDIMEN	T,
129	00:09:47:16	00:09:49:23	PRODUCING THE COLUMNAR
-		MORPHOLOGI	ES
130	00.00.40.22	00.09.52.27	THAT ARE
100	00.00.40.20	SO CHARACTE	RISTIC
101	00.00.50.00		
131	00:09:52:29	00:09:56:04	
		ENVIRONMEN	TALCONDITIONS
		CHANGED SO	MEWHAI,
132	00:09:56:06	00:10:00:08	WHERE COARSER SEDIMENT
		SANDSCAME	IN
133	00:10:00:10	00:10:03:13	AND STOPPED THE GROWTH
		OF STROMATO	DLITE.
134	00:10:03:15	00:10:04:28	PROBABLY THE SEDIMENTS
135	00:10:05:00	00:10:06:16	WERE BEING DEPOSITED
		TOO RAPIDLY.	
136	00.10.06.18	00.10.09.08	AND THE CYANAL BACTERIA
100	00.10.00110	JUST COULDN	
137	00.10.00.10	00.10.11.23	
107	00.10.00.10		
100	00.10.11.05	00.10.12.27	
100	00.10.11.20	00.10.13.27	
139	00.10.13.29	00.10.16.09	
4.40	00 40 40 44		
140	00:10:16:11	00:10:18:26	AGAIN WITH PRECIPITATION
		AND ACCUMU	_ATION
141	00:10:18:28	00:10:20:20	OF CALCIUM CARBONATE
142	00:10:20:22	00:10:22:28	AND THEN THE CONDITIONS
		CONTINUED.	
143	00:10:23:00	00:10:24:13	AND ABOVE HERE,
144	00:10:24:15	00:10:25:21	THE COLUMNAR
		STROMATOLIT	ES
145	00:10:25:23	00:10:27:12	AGAIN BEGIN
		TO DEVELOP.	
146	00.10.22.14	00.10.29.12	AND THEN HIGHER UP
147	00.10.20.14	00.10.31.11	THESE COARSER SEDIMENTS
177	00.10.20.14		
1/0	00.10.21.12	00.10.22.15	
140	00.10.31.13		
4.40	00.40.00.47	STRUMATULIT	
149	00:10:33:17	00:10:35:08	SU, IT'S BY STUDYING
150	00:10:35:10	00:10:37:07	
		OF THE MICRO	ORGANISMS
151	00:10:37:09	00:10:38:22	WITH THE SEDIMENT
152	00:10:38:24	00:10:40:06	AND THE SEQUENCES
153	00:10:40:08	00:10:42:05	IN WHICH
		THESE THINGS	SOCCUR
154	00:10:42:07	00:10:45:11	THAT A GEOLOGIST
		CAN GET AN U	INDERSTANDING
		OF THE ENVIR	ONMENT
155	00:10:45.13	00:10:48:24	AND HEAR THE HISTORY
		THAT WENT O	Ν
156	00.10.48.26	00.10.50.25	
100	00.10.40.20		
157	00.10.50.27		
157	00.10.30.27	00.10.03.03	

			ATION
158	00.10.54.11	00:10:55:28	AHON. THE CELL STRUCTURE
100	00.10.01.11	OF STROMAT	OLITES
159	00:10:56:00	00:10:58:28 WAS VERY SII	AND ALL EARLY LIFE FORMS MPLE.
160	00:10:59:00	00:11:02:03 CALL PROKAP	A STRUCTURE BIOLOGISTS
161	00:11:03:27	00:11:05:18	PROKARYOTE CELLS
162	00:11:05:20	00:11:08:24 REPLICAS OF	BY SPLITTING INTO EXACT
163	00:11:11:00	00:11:12:20 RECORD	LATER IN THE FOSSIL
164	00:11:12:22	00:11:16:00 CELL STRUCT	MORE COMPLEX EUKARYOTE
165	00:11:16:02	00:11:18:10 REPRODUCE	EUKARYOTES SEXUALLY
166	00.11.18.12	00.11.19.25	RESULTING IN VARIATIONS
167	00.11.19.27	00.11.21.16	IN NEWLY CREATED CELLS
168	00:11:23:11	00:11:26:15	MOST MODERN LIFE FORMS,
		INCLUDING AI	VIMALS,
169	00:11:26:17	00:11:27:23	ARE EUKARYOTIC.
170	00:11:29:00	00:11:31:19	PRIOR TO SEXUAL
		REPRODUCTIO	DN,
171	00:11:31:21	00:11:36:10	
172	00:11:36:12	00:11:39:08	AND IF YOU HAVE
173	00.11.30.10	00.11.40.22	
174	00:11:40:24	00:11:42:21	YOU'RE ESSENTIALLY
175	00:11:42:23	00:11:45:13	OF CLONES
176	00:11:45:15	00:11:48:04	CARRYING THE ORIGINAL
177	00:11:48:06	00:11:50:17	AS LONG AS THERE IS
178	00.11.50.19	00.11.52.02	
179	00:11:52:04	00:11:54:03	AND ESSENTIALLY THERE'S
180	00:11:54:05	00:11:56:08	WITH THE EXCEPTION
		OF MUTATION	,
181	00:11:56:10	00:11:58:08 BECAUSE YOU	FOR EVOLUTION, I SIMPLY HAVE
182	00:11:58:10	00:12:00:23 BEING CLONEI	THE SAME ORGANISM
183	00:12:00:25	00:12:02:27 AFTER GENER AFTER GENER	GENERATION ATION ATION
184	00:12:02:29	00:12:06:12 SEXUAL REPR	WHEN YOU FINALLY HAVE
185	00:12:06:14	00:12:08:13 FOR THE FIRS	YOU HAVE T TIME
186	00:12:08:15	00:12:11:16	THE CHANCE FOR DNA
187	00:12:11:18	00:12:14:07	TO HAVE

188	00.12.14.00	
100	00.12.14.03	OF EACH OF ITS PARENTS
180	00.12.17.07	
103	00.12.17.07	FROM FITHER PARENT
190	00.12.20.02	
100	00.12.20.02	
191	00.12.23.04	00:12:25:01 FOR THESE ORGANISMS
	00112120101	TO CHANGE.
192	00:12:27:13	00:12:29:29 ABOUT 600 MILLION
		YEARS AGO.
193	00:12:30:01	00:12:33:05 MANY COMPLEX EUKARYOTE
		LIFE FORMS DEVELOPED
194	00:12:33:07	00:12:35:05 WITH GEOLOGICAL
		SUDDENNESS.
195	00:12:35:07	00:12:37:13 THOUGH SEXUAL REPRODUCTION
		NO DOUBT ACCELERATED
196	00:12:37:15	00:12:39:15 THIS APPEARANCE
		OF NEW LIFE,
197	00:12:39:17	00:12:42:14 NO ONE KNOWS EXACTLY
		WHY IT HAPPENED.
198	00:12:42:16	00:12:44:21 THE FIRST APPEARANCE
		OF NUMEROUS FOSSILS
199	00:12:44:23	00:12:46:15 IN ROCKS OF THIS AGE
200	00:12:46:17	00:12:49:22 MARKS THE END OF
		THE LONG PRECAMBRIAN ERA
201	00:12:49:24	00:12:52:29 AND THE BEGINNING
		OF THE PALEOZOIC ERA.
202	00:12:53:01	00:12:56:08 THIS EVENT IS KNOWN
		AS THE CAMBRIAN EXPLOSION.
203	00:12:56:10	00:12:58:07 THE PRESERVATION
		OF THESE FOSSILS
204	00:12:58:09	00:12:59:22 WAS MADE POSSIBLE
205	00:12:59:24	00:13:02:16 BY THE FACT THAT LIFE,
		FOR THE FIRST TIME,
206	00:13:02:18	00:13:04:05 INCLUDED ABUNDANI
~~-	~ ~ ~ ~ ~ ~ ~ ~	HARD PARIS.
207	00:13:04:07	00:13:07:02 THE SIGNIFICANCE OF
000	00 40 07 04	
208	00:13:07:04	
200	00.12.10.22	
209	00:13:10:23	00:13:12:11 WIDESPREAD APPEARANCE
210	00:13:12:13	ODCANIEME
014	00.12.14.20	
211	00.13.14.20	THE EADLIED ODCANISMS
242	00.10.17.00	
212	00.13.17.22	
213	00.13.19.10	
21/	00.12.22.22	
214	00.13.22.22	THOSE HARD PARTS
215	00.13.25.06	
210	00.13.23.00	
210	00.10.20.21	
		OF OXYGEN
217	00.13.20.28	00.13.31.26 MOST OF THOSE
- · ·	00.10.20.20	

		EARLIER CREATURES
218	00:13:31:28	00:13:34:06 ABSORBED OXYGEN THROUGH
		THEIR SKIN TISSUES.
219	00:13:34:08	00:13:36:20 IF YOU CAN IMAGINE
		A JELLYFISH
		OR AN EARTHWORM,
220	00:13:36:22	00:13:38:15 IT HAS
		LARGE SURFACE AREA
221	00:13:38:17	00:13:40:24 THROUGH WHICH IT
		CAN ABSORB OXYGEN.
222	00:13:40:26	00:13:43:05 A HARD PART WOULD
		INHIBIT THAT.
223	00:13:43:07	00:13:44:22 IN EARTH'S EARLY HISTORY
224	00:13:44:24	00:13:47:07 WE HAD MUCH LESS OXYGEN
		IN THE ATMOSPHERE
225	00:13:47:09	00:13:48:24 THAN WE DO NOW.
226	00:13:48:26	00:13:52:06 BY THE CAMBRIAN, IT
		MAY HAVE BEEN NECESSARY
227	00:13:52:08	00:13:55:05 FOR ANIMALS TO HAVE
		HARD PARTS TO SURVIVE
228	00:13:55:07	00:13:57:20 BECAUSE OF OTHER
		ANIMALS EATING THEM.
229	00:13:57:22	00:14:00:20 WITH A HARD SHELL,
		YOU WERE LESS ATTRACTIVE
		AND HARDER TO EAT,
230	00:14:00:22	00:14:02:22 SO YOU MIGHT
		SURVIVE BETTER
231	00:14:02:24	00:14:05:10 THAN SOMETHING LIKE
		AN EARTHWORM
	~~	OR A JELLYFISH.
232	00:14:05:12	00:14:07:14 THE CAMBRIAN PERIOD
	~~ ~ ~ ~ ~ ~ ~ ~	
233	00:14:07:16	00:14:10:27 OF WHAT'S KNOWN AS THE
004	00 4 4 4 0 00	
234	00:14:10:29	00:14:12:26 CONDITIONS ON EARTH
225	00.44.40.00	
230	00.14.12.26	
226	00.14.15.14	
230	00.14.15.14	50 MILLION VEADS
227	00.14.17.14	
201	00.14.17.14	WHICH STILL SURVIVE TODAY
238	00.14.20.24	
200	00.14.20.24	THE FIRST VERTEBRATES
239	00.14.23.19	00:14:25:16 OUR MOST ANCIENT ANCESTORS
240	00:14:25:18	
241	00:14:27:05	00:14:29:16 CONTINENTS WERE DRIFTING
2	00.11.27.00	TOWARD THE EQUATOR
242	00:14:29:18	00:14:32:00 TRANSFORMING COLD.
	00111120110	GLACIATED TERRAIN
243	00:14:32:02	00:14:34:04 INTO WARM. SHALLOW SEAS
244	00:14:34:06	00:14:36:06 ORGANISMS THRIVED
		AND DIVERSIFIED
245	00:14:36:08	00:14:37:22 IN THIS ENVIRONMENT.
246	00:14:37:24	00:14:39:21 THE BOTTOMS
		OF THESE SHALLOW SEAS

247	00:14:39:23	00:14:42:13 WERE LITERALLY CARPETED
		WITH INVERTEBRATE ANIMALS,
248	00:14:42:15	00:14:44:21 INCLUDING BRACHIOPODS,
		TRILOBITES,
249	00:14:44:23	00:14:46:12 AND PRIMITIVE CORALS.
250	00:14:46:14	00:14:49:10 ABOVE THESE SWAM
		THE FIRST FISHES.
251	00:14:49:12	00:14:51:04 BY MIDDLE PALEOZOIC TIME,
252	00:14:51:06	00:14:54:05 PLANTS AND ANIMALS HAD MADE
		THEIR WAY OUT OF THE OCEANS
253	00:14:54:07	00:14:56:06 AND BEGAN
		TO POPULATE THE LAND.
254	00:14:56:08	00:14:59:05 THE FIRST APPEARANCE OF LIFE
		OUT OF THE SEAS
255	00.14.59.07	00.15.00.26 WAS POSSIBLE
200	00111100101	IN LARGE PART
256	00.12.00.28	00.15.02.18 BECAUSE THE PLANET'S
200	00.10.00.20	
257	00.15.02.20	
257	00.15.02.20	
200	00.15.04.21	
250	00.15.00.00	
209	00.15.06.06	00.15.09.25 AS OXYGEN BUILT UP,
260	00:15:09:27	00:15:12:28 AN UZUNE LAYER FURMED
	~~ ~ ~ ~ ~ ~ ~	HIGH IN THE ATMOSPHERE
261	00:15:13:00	00:15:14:19 SHIELDING
		THE EARTH'S SURFACE
262	00:15:14:21	00:15:17:09 FROM DEADLY
		SOLAR RADIATION.
263	00:15:17:11	00:15:18:24 ALTHOUGH THIS PROCESS
264	00:15:18:26	00:15:21:09 WAS ACTUALLY WELL UNDER WAY
		IN THE PRECAMBRIAN,
265	00:15:21:11	00:15:23:29 IT WAS NOT UNTIL
		THE MID-PALEOZOIC
266	00:15:24:01	00:15:25:25 THAT LIFE WAS
		SUFFICIENTLY DEVELOPED
267	00:15:25:27	00:15:28:11 TO TAKE ADVANTAGE
		OF THE DRY LAND HABITATS
268	00:15:28:13	00:15:30:13 THE OZONE LAYER
		PROTECTED.
269	00.12.30.12	00.15:33:19 AT THE SAME TIME OXYGEN
200	00110100110	INCREASED IN THE ATMOSPHERE
270	00.12.33.21	00.15.37.18 ANOTHER ATMOSPHERIC GAS
210	00.10.00.21	
271	00.15.37.20	
271	00.15.37.20	
212	00.15.59.09	
070	00.45.40.07	
273	00:15:42:07	
<u> </u>	~ ~ ~ ~ ~ ~ ~	
274	00:15:44:07	00:15:46:19 IS TRAPPED IN ORGANISMS,
		IN SEA WATER,
275	00:15:46:21	00:15:49:26 AND EVENTUALLY
		BECOMES LIME OOZES
		ON THE SEA FLOOR
276	00:15:49:28	00:15:53:01 WHICH MAY EVENTUALLY
		BECOME LIMESTONE.
277	00:15:53:03	00:15:56:00 SO ORGANISMS ARE

			DADT
278	00.12.26.02	00.15.58.23	
210	00.10.00.02		
270	00.15.58.25	00.16.01.22	THE PLANTS TAKE IN
215	00.10.00.20	THE CARBON I	
280	00.16.01.24	00.16.03.04	AND GIVE OFF OXYGEN
281	00:16:03:06	00:16:04:19	SO THE PLANTS
282	00:16:03:00	00:16:06:19	THE LIMESTONES
283	00:16:06:21	00:16:07:20	THE OCEAN
284	00:16:07:22	00:16:09:03	THE ATMOSPHERE
285	00:16:09:05	00:16:10:07	HUMAN BEINGS
286	00:16:00:00	00:16:11:15	HORSES AND CAMELS
287	00:16:11:17	00:16:13:01	THE SYCAMORE TREE
201	00.10.11.17		
288	00.16.13.03	00.16.15.28	ARE ALL INTERRELATED
200	00.10.10.00	IN A BIG CYCLI	F
289	00.16.16.00	00.16.17.27	CALLED THE CARBON CYCLE
290	00.16.17.29	00:16:19:10	THE LATE PALEOZOIC
291	00.16.19.12	00:16:22:12	WAS A TIME OF GREAT
201	00.10.10.12	GLOBAL-SCAL	E CHANGES
292	00.16.25.14	00.16.24.27	DURING THIS TIME
202	00.10.22.11	ALMOST ALL	
		OF THE CONTI	NENTS
293	00:16:24:29	00:16:27:28	WERE TECTONICALLY
		ASSEMBLED IN	NTO A SINGLE
		SUPERCONTIN	IENT
294	00:16:28:00	00:16:29:15	CALLED PANGAEA.
295	00:16:29:17	00:16:32:07	THIS IMMENSE LAND MASS
	000.20	NEARLY SPAN	NED THE EARTH
296	00:16:32:09	00:16:34:08	FROM POLE TO POLE.
297	00:16:34:10	00:16:35:22	FORMING A TREMENDOUS
		NORTH/SOUTH	BARRIER
298	00:16:35:24	00:16:38:05	THAT BLOCKED
		OCEAN CIRCU	LATION
299	00:16:38:07	00:16:40:20	AND SEVERELY DISRUPTED
		THE CLIMATE.	
300	00:16:40:22	00:16:43:08	THE CONTINENTAL
		COLLISIONS TI	HAT
		CREATED PAN	GAEA
301	00:16:43:10	00:16:45:15	ALSO TRANSFORMED
		CONTINENTAL	MARGINS
302	00:16:45:17	00:16:47:22	FROM SHALLOW SEAS
		WITH LIFE	
303	00:16:47:24	00:16:49:01	INTO MOUNTAIN RANGES
304	00:16:49:03	00:16:51:21	SIMILAR TO THE ALPS
		AND THE HIMA	LAYAS.
305	00:16:51:23	00:16:55:12	THESE CHANGES
		IN CLIMATE AN	ID TERRAIN
		IN LATE PALEC	DZOIC TIME
306	00:16:55:14	00:16:57:29	HAD A GRAVE EFFECT
		ON THE GLOB/	AL ECOSYSTEM
307	00:16:58:01	00:16:59:28	AND TRIGGERED
		THE LARGEST	
		MASS EXTINC	ΓΙΟΝ
308	00:17:00:00	00:17:01:22	IN ALL
		OF EARTH HIS	TORY.

309	00:17:01:24	00:17:04:12 IN THIS TRAGIC FINALE
		TO A GEOLOGIC ERA,
310	00:17:04:14	00:17:08:27 OVER 90% OF ALL KNOWN
		SPECIES OF LIFE
		DISAPPEARED.
311	00:17:08:29	00:17:11:01 THE SMALL PERCENTAGE
		OF SPECIES
312	00:17:11:03	00:17:13:00 THAT SURVIVED
		THE MASS EXTINCTION
313	00:17:13:02	00:17:15:00 AT THE END
		OF THE PALEOZOIC
314	00:17:15:02	00:17:16:29 INHABITED A WORLD
		OF OPPORTUNITIES,
315	00:17:17:01	00:17:21:00 MOVING INTO ENVIRONMENTS
		NOW FREE OF COMPETITORS.
316	00:17:21:02	00:17:24:29 THE FOSSIL RECORD SUGGESTS
		THAT INDIVIDUAL SPECIES
317	00:17:25:01	00:17:28:01 GAVE RISE TO A MULTITUDE
		OF NEW LIFE FORMS,
318	00:17:28:03	00:17:31:15 EACH WELL-SUITED TO ITS
		PARTICULAR ENVIRONMENT.
319	00:17:33:02	00:17:35:29 MASS EXTINCTIONS
		HAVE OCCURRED
320	00:17:36:01	00:17:38:00 THROUGHOUT
		THE HISTORY OF LIFE.
321	00:17:38:02	00:17:40:15 THE IMPACT OF THESE
		MASS EXTINCTIONS
322	00:17:40:17	00:17:43:01 IN SOME WAYS
		COULD BE VIEWED
323	00:17:43:03	00:17:46:01 AS TAKING OUT
		A LOT OF ORGANISMS
324	00:17:46:03	00:17:49:00 AND ALLOWING
		FOR NEWER ORGANISMS
		TO EVOLVE
325	00:17:49:02	00:17:52:00 AND REPOPULATE
		THE EARTH
326	00:17:52:02	00:17:53:16 WITH DIFFERENT
		SPECIES.
327	00:17:53:18	00:17:55:17 THE ARRIVAL
		OF NEW SPECIES
328	00:17:55:19	00:17:59:12 IN THE AFTERMATH OF THE
		PALEOZOIC MASS EXTINCTION
329	00:17:59:14	00:18:02:14 HERALDS THE NEXT
		GEOLOGIC ERA
330	00:18:02:16	00:18:04:00 THE MESOZOIC.
331	00:18:05:27	00:18:07:13 EVOLUTION IN THE MESOZOIC
332	00:18:07:15	00:18:09:28 WAS CRITICAL
		FOR LIFE ON EARTH.
333	00:18:10:00	00:18:11:28 AT THIS TIME,
		LIFE WAS TRANSFORMED
334	00:18:12:00	00:18:13:28 FROM ANCIENT
		TO MORE MODERN FORMS.
335	00:18:14:00	00:18:16:28 REEF-BUILDING CORALS APPEARED
		ON CONTINENTAL MARGINS,
336	00:18:17:00	00:18:19:13 AND LARGE REPTILES
		JOINED THE FISHES

337	00:18:19:15	00:18:21:07	AS SWIMMING PREDATORS.
338	00:18:21:09	00:18:22:23	LATER IN THE MESOZOIC,
339	00:18:22:25	00:18:24:28	THE FLOWERING PLANTS
		AND DECIDUC	OUS TREES
340	00:18:25:00	00:18:26:12	FIRST EVOLVED ON LAND,
341	00:18:26:14	00:18:29:28	AS WELL AS FLYING REPTILES
		AND THE FIRS	ST BIRDS.
342	00.18.30.00	00.18.31.13	MAMMALS
0.2	00.10.00.00	WERE ALSO P	PRESENT
343	00.18.31.15	00.18.34.09	BUT THEY WERE SMALL
0-0	00.10.01.10		
211	00.19.24.11	00.19.26.10	
344	00.10.34.11		
245	00.10.26.12		
345	00:18:36:12	00:18:38:25	
	~ ~ ~ ~ ~ ~ ~	IS BEST KNOV	
346	00:18:38:27	00:18:40:28	AS THE AGE
		OF THE DINOS	SAURS.
347	00:18:41:00	00:18:43:13	IT WAS THESE SO-CALLED
		TERRIBLE LIZ	ARDS
348	00:18:43:15	00:18:46:19	THAT DOMINATED THE LAND
		FOR SOME 14	0 MILLION YEARS.
349	00:18:46:21	00:18:48:20	DINOSAURS CAPTURED
		THE PUBLIC'S	S IMAGINATION
350	00:18:48:22	00:18:51:11	FROM THE TIME THEIR FOSSILS
		WERE FIRST	EXCAVATED
351	00:18:51:13	00:18:53:27	IN THE EARLY
		19th CENTUR	Υ.
352	00.18.53.29	00.18.56.26	SOON THE RUSH BEGAN
002	00.10.00.20		THE REMNANTS
353	00.18.56.28	00.18.50.05	
555	00.10.30.20	CDEATIDES	Of THESE ANGLENT
254	00.19.50.07	00.10.01.26	
304	00.16.59.07		
255	00.40.04.00	SPAININED IT	
300	00:19:01:28	00:19:03:26	
050	~ ~ ~ ~ ~ ~	FROM DINUS	AUR SKULLS
356	00:19:03:28	00:19:06:11	TOFOSSILIZED
		DINOSAUR E	GGS.
357	00:19:06:13	00:19:08:11	PIECE BY PIECE,
358	00:19:08:13	00:19:11:12	A SPECTACULAR VIEW
		OF EARTH'S I	PAST INHABITANTS
359	00:19:11:14	00:19:13:27	GRADUALLY TOOK SHAPE.
360	00:19:13:29	00:19:15:26	DINOSAURS WERE SEEN
		AS SOLITARY	/ ?
361	00:19:15:28	00:19:17:26	COLD-BLOODED CREATURES
362	00:19:17:28	00:19:20:11	WHO MOVED THROUGH
		THEIR TROPI	CAL WORLD
363	00:19:20:13	00:19:21:25	AT A SLUGGISH PACE.
364	00.19.22.27	00.19.24.11	BUT RECENT DATA
365	00.19.24.13	00.19.26.12	TOGETHER WITH
000	00.10.20	A RETTER UN	IDERSTANDING
366	00.10.26.14	00.10.27.28	
367	00.10.20.14	00.10.21.20	HAVE PROMOTED SCIENTISTS
507	00.13.20.00		
260	00.10.20.20		
300	00.19.30.29	00.19.34.20	FUSSIL I KAUNS INDIUATE
200	00.40.04.00		
369	00:19:34:28	00:19:37:03	MUST HAVE BEEN

		SWIFT-FOOT	ED.
370	00:19:37:05	00:19:39:18	DINOSAUR FOSSILS HAVE ALSO
		BEEN DISCO	VERED
371	00:19:39:20	00:19:42:06	IN PLACES THAT WERE DRY
		AND HAD CO	OL CLIMATES
372	00:19:42:08	00:19:43:27	DURING THE MESOZOIC.
373	00:19:43:29	00:19:45:16	THIS AND OTHER EVIDENCE
374	00:19:45:18	00:19:48:03	SUGGESTS THESE ANIMALS
		WERE WARN	1-BLOODED.
375	00:19:48:05	00:19:49:25	PREDATORY DINOSAURS
376	00:19:49:27	00:19:52:24	APPARENTLY REQUIRED
		LARGE AMOL	JNTS OF FOOD
377	00:19:52:26	00:19:54:08	FOR SURVIVAL,
378	00:19:54:10	00:19:56:09	SUGGESTING THE HIGH RATE
070	00 40 50 44		.ISM
379	00:19:56:11	00:19:58:09	
200	00.40.50.44	OF WARM-BL	OUDED ANIMALS.
380	00:19:58:11	00:20:01:24	FINALLY, FAR FROM LIVING
204	00.00.01.00	SOLITARY LI	
381	00:20:01:26	00:20:04:25	SUME DINUSAURS LIVED
202	00.00.04.07	IN NEST-BUIL	DING HERDS,
382	00:20:04:27	00:20:06:21	
383	00:20:06:23		THE DINUSAURS MIGHT STILL
204	00.00.40.44		UR WURLD TUDAY,
304	00.20.10.11	00.20.12.09	EVEN MORE DIVERSE
295	00.20.12.11	AND SPECTA	
386	00.20.12.11	00.20.14.09	RUTEOR ANOTHER DRASTIC
500	00.20.14.11	ENIVIRONME	NTAL CHANGE
387	00.20.16.26	00.20.18.25	65 MILLION VEARS AGO
388	00.20.10.20	00.20.10.25	WHICH TRIGGERED
500	00.20.10.27	VET ANOTHE	
389	00.20.21.12	00.20.23.27	OF WORLD-WIDE
000	00.20.21.12	MASS EXTIN	CTIONS.
390	00:20:23:29	00:20:27:15	GEOLOGIC CLUES SUGGEST
	•••	SEVERAL NA	TURAL PHENOMENA
391	00:20:27:17	00:20:30:09	MAY HAVE BEEN RESPONSIBLE
		FOR THE CH	ANGE.
392	00:20:30:11	00:20:33:25	DUST FROM EXTREMELY INTENSE
		VOLCANIC EI	RUPTIONS
393	00:20:33:27	00:20:36:10	POSSIBLY COOLED
		THE ATMOSF	PHERE ENOUGH
394	00:20:36:12	00:20:38:10	TO CHANGE EARTH'S CLIMATE
395	00:20:38:12	00:20:40:28	AND SERIOUSLY DISRUPT
		THE FOOD C	HAIN.
396	00:20:41:00	00:20:44:24	OR A LARGE ASTEROID
		MAY HAVE S	TRUCK THE EARTH,
397	00:20:44:26	00:20:46:24	COOLING IT,
398	00:20:46:26	00:20:49:22	AS SMOKE AND DUST
		BLOCKED OL	JT SUNLIGHT.
399	00:20:49:24	00:20:51:06	WHATEVER THE CAUSE,
400	00:20:51:08	00:20:54:08	MANY SPECIES
		WERE NO LC	NGER WELL-SUITED
401	00:20:54:10	00:20:56:24	FOR THEIR ENVIRONMENTS.
402	00:20:56:26	00:20:59:23	THE MASS EXTINCTION
		AT THE END (	OF THE MESOZOIC

403	00:20:59:25	00:21:01:22 NOT ONLY EXTERMINATED
40.4		
404	00:21:01:24	00:21:04:07 IT USHERED IN THE PRESENT
		ERA OF GEOLOGIC TIME
405	00:21:04:09	00:21:05:22 THE CENOZOIC.
406	00:21:05:24	00:21:08:22 CENOZOIC TIME IS MARKED BY
		INTENSE TECTONIC CHANGES
407	00:21:08:24	00:21:11:23 WHICH HELPED TO DIRECT EVENTS
		IN EVOLUTION.
408	00:21:11:25	00:21:14:22 FOR EXAMPLE. WHEN AUSTRALIA
	0012111120	BECAME TECTONICALLY DETACHED
409	00.21.14.24	
410	00:21:14:24	
410	00.21.10.09	
444	00.04.40.00	
411	00:21:18:23	
412	00:21:21:09	00:21:23:07 RESULTING
		IN THE UNUSUAL FORMS
413	00:21:23:09	00:21:25:07 WE SEE
		IN AUSTRALIA TODAY,
414	00:21:25:09	00:21:27:23 SUCH AS
		THE DUCKBILLED PLATYPUS,
415	00:21:27:25	00:21:30:16 THE SPINY ANTEATER,
		AND THE KANGAROO.
416	00.51.30.18	00:21:33:07 THE ECOLOGICAL CRISIS
	00121100110	OF THE MESOZOIC EXTINCTION
417	00.21.33.09	00.21.35.22 AND THE TECTONIC ACTIVITY
	00121100100	WHICH FOLLOWED
418	00.21.35.24	00.21.38.22 HELPED SET THE STAGE
410	00.21.00.24	
410	00.21.20.24	
419	00.21.30.24	
400	00.04.40.04	
420	00:21:40:24	
421	00:21:42:15	00:21:45:07 AN EXTRAORDINARY RECORD
		OF LIFE IN THE CENOZOIC
422	00:21:45:09	00:21:48:07 HAS BEEN FOUND IN A RATHER
		UNEXPECTED PLACE
423	00:21:48:09	00:21:49:21 BURIED BENEATH THE STREETS
424	00:21:49:23	00:21:52:05 OF ONE OF THE WORLD'S
		LARGEST CITIES.
425	00:21:55:07	00:21:58:05 AT RANCHO LA BREA
		IN LOS ANGELES,
426	00:21:58:07	00:22:02:06 NATURAL TAR POOLS HAVE TRAPPED
-		THOUSANDS OF ANIMALS.
427	00.25.05.08	00:22:05:21 THE TAR HAS PRESERVED
	00.22.02.00	AN ESPECIALLY COMPLETE RECORD
428	00.22.05.23	00.22.08.20 OF PREHISTORIC LIFE
420	00.22.03.23	
400	00.00.00.00	
429	00.22.06.22	
400	00.00.44.00	
430	00:22:11:22	UU:22:14:21 IN FACT, THE LAST
10.1		
431	00:22:14:23	00:22:17:20 HAS GENERALLY
		BEEN CONSIDERED
		THE ICE AGES.
432	00:22:17:22	00:22:22:06 IT IS THAT SETTING

		THAT, UH, GOVERNS
		WHAT WE SEE
433	00:22:22:08	00:22:24:06 HERE AT
		RANCHO LA BREA.
434	00:22:24:08	00:22:28:06 WE ARE IN THE LAST HALF
		OF THE LAST GLACIAL PERIOD,
435	00:22:28:08	00:22:31:10 JUST BEFORE
		MODERN CLIMATES
		COME ABOUT.
436	00:22:31:12	00:22:35:16 THE OLDEST REMAINS HERE
		AT RANCHO LA BREA
		OF VERTEBRATES
437	00:22:35:18	00:22:37:06 TERRESTRIAL
		VERTEBRATES
438	00:22:37:08	00:22:40:08 UH, ARE ABOUT 36,000,
		38.000 YEARS OLD.
439	00:22:40:10	00:22:43:05 AND THE FOSSIL RECORD HERE
		EXTENDS FROM THAT PERIOD
440	00:22:43:07	00:22:46:07 UP TO ABOUT
		10.000 YEARS AGO
441	00:22:47:19	00:22:50:11 THE LA BREA TAR PITS
		HAVE YIELDED FOSSILS
442	00:22:50:13	00:22:52:18 RANGING
		FROM MICROSCOPIC PLANTS
443	00:22:52:20	00:22:54:03 AND POLLEN SPORES
444	00:22:54:05	00:22:57:19 TO GIANT MAMMOTHS
		AND BISONS.
445	00:22:57:21	00:23:00:18 FOR ME. THE MOST FUN
		IS NOT SO MUCH
		FINDING THE FOSSIL.
446	00:23:00:20	00:23:02:10 IT'S IDENTIFYING IT.
447	00:23:02:12	00:23:05:03 SUDDENLY THIS JUST
		ISN'T A LUMP OF BONES.
448	00:23:05:05	00:23:08:17 SUDDENLY IT'S
		A SABER-TOOTH CAT SKULL,
		A BISON FEMUR.
449	00:23:08:19	00:23:10:17 THERE'S A THRILL
		WHEN YOU REALIZE
450	00:23:10:19	00:23:12:06 THIS ISN'T
		JUST A FOSSIL.
451	00:23:12:08	00:23:16:04 THIS IS A PARTICULAR
		KIND OF ANIMAL
		THAT DIED HERE.
452	00:23:16:06	00:23:17:20 THAT'S EXCITING
		FOR ME.
453	00:23:17:22	00:23:19:20 AS THE SITE
		IS EXCAVATED,
454	00:23:19:22	00:23:21:19 THE POSITIONS
		OF EVERY FOSSIL
455	00:23:21:21	00:23:23:19 ARE CAREFULLY MEASURED
		AND CATALOGED.
456	00:23:23:21	00:23:26:05 AT THE END
		OF THE EXCAVATION,
457	00:23:26:07	00:23:28:19 WE WANT TO BE ABLE
		TO RECONSTRUCT
458	00:23:28:21	00:23:31:19 EXACTLY HOW THESE BONES

		CAME TO BE DEPOSITED.
459	00:23:31:21	00:23:34:18 WHAT HAPPENED TO
		THIS ANIMAL BETWEEN
		DYING IN THE ASPHALT
460	00.23.34.20	
400	00.23.36.11	
401	00.25.50.11	
460	00.00.00	
402	00.23.39.05	
463	00:23:42:19	00:23:44:05 IN THE DEPOSIT
464	00:23:44:07	00:23:47:04 AND PUT IT BACK
		WITH THE REST
		OF THE ANIMAL
465	00:23:47:06	00:23:50:03 TO DETERMINE WHAT HAPPENS
		TO THESE INDIVIDUALS
		WHEN THEY DECOMPOSE
466	00:23:50:05	00:23:52:18 AND AS THE PIT
		IS DEPOSITED
		THROUGH TIME.
467	00:23:52:20	00:23:54:03 AFTER EXCAVATION.
468	00:23:54:05	00:23:56:23 THE BONES ARE TAKEN
		TO THE NEARBY LAB
469	00:23:56:25	00:23:58:06 FOR ANALYSIS.
470	00:23:58:08	00:24:00:13 EXAMINING THE MATERIAL
	00120100100	AROUND THE BONES
471	00.24.00.12	00.24.04.18 IS AS IMPORTANT AS IDENTIFYING
		THE BONES THEMSELVES
472	00.24.04.20	00.24.08.00 ALL OF THE SOU
112	00.2 1.0 1.20	
173	00.24.08.02	
473	00.24.00.02	
474	00.24.10.04	
475	00.24.12.20	
176	00.24.44.49	
470	00.24.14.16	
477	00.04.47.00	
477	00:24:17:06	U0:24:20:04 AND SHELLS
470	00.04.00.00	
478	00:24:20:06	
		ARE THAT TOOL THAT YOU NEED
479	00:24:27:05	00:24:29:18 TO REALLY RECONSTRUCT
		AN ENVIRONMENT.
480	00:24:29:20	00:24:32:02 UM, THEY GIVE YOU
		MUCH MORE INFORMATION
481	00:24:32:04	00:24:35:03 ABOUT RAINFALL
		ANDAND CLIMATE CHANGES
482	00:24:35:05	00:24:38:03 THAN LARGE BONES DO.
483	00:24:38:05	00:24:41:17 UM, LARGE ANIMALS DIDN'T
		NECESSARILY LIVE HERE.
484	00:24:41:19	00:24:43:18 THEY JUST DIED HERE,
485	00:24:43:20	00:24:47:03 WHEREAS A MOUSE
		OROR A GOPHER
486	00:24:47:05	00:24:49:15 PROBABLY SPENT
		ITS ENTIRE LIFE
487	00:24:49:17	00:24:52:02 RIGHT WITHIN THE AREA
		OF THE PARK,

488	00:24:52:04	00:24:56:01 SO IT IS VERY IMPORTANT
180	00.24.56.03	
490	00:24:59:11	00:24:39:09 ALL OF THESE SMALL THINGS. 00:25:02:16 THROUGH CAREFUL IDENTIFICATION
491	00:25:02:18	00:25:04:01 COLLECTED
492	00:25:04:03	00:25:07:00 SCIENTISTS HAVE BEEN ABLE
493	00:25:07:02	00:25:10:17 THE FORMER HABITAT
101	00.25.10.10	AT KANGHU LA DREA. 00:25:12:02 /0.000 VEADS ACO
494	00.25.10.13	00.25.12.02 $40,000$ TEANS ADD, 00.25.15.01 THE LOS ANGELES BASIN
400	00.20.12.04	WAS A SAGEBRUSH PLAIN
496	00:25:15:03	00:25:18:01 DOTTED WITH GROVES OF CYPRESS AND PINE
497	00:25:18:03	00:25:19:22 AND STREAMSIDE WOODLANDS.
498	00:25:21:06	00:25:24:02 A GREAT ABUNDANCE AND DIVERSITY OF ANIMALS
499	00:25:24:04	00:25:26:17 LIVED HERE, INCLUDING DEER
500	00:25:26:19	00:25:28:25 DIRE WOLVES,
501	00.25.28.27	00.25.31.16 CPOUND SLOTHS
501	00.23.20.27	AND MASTODONS
502	00:25:33:03	00:25:36:00 MOST OF THE LARGER MAMMALS
503	00.22.36.02	10.25.37.20 HAVE SINCE BECOME EXTINCT
503 504	00:25:41:07	00:25:43:17 THE FOSSILS
505	00.25.43.10	
505	00.23.43.19	OF LATE CENOZOIC TIME-
506	00:25:46:18	00:25:49:01 JUST 25,000
507	00:25:49:03	00:25:51:14 THOUGH FEW
E00	00.25.51.10	
506	00.25.51.16	AS RANCHO LA BREA,
509	00:25:54:00	00:25:56:29 0THER CENOZOIC FOSSILS
510	00:25:57:01	0:25:59:28 OF EVOLUTION
		SPANNING MILLIONS OF YEARS.
511	00:26:00:02	IS ESPECIALLY STUNNING.
512	00:26:03:01	00:26:05:29 APPEARING NEAR THE BEGINNING OF THE CENOZOIC,
513	00:26:06:01	00:26:08:29 THE FIRST HORSES
514	00:26:09:01	00:26:11:29 AND HAD FOUR TOES
515	00:26:12:01	00:26:13:14 THEY LIVED
516	00:26:13:16	00:26:16:15 THEN ABOUT 40 MILLION
517	00:26:16:17	00:26:19:00 A NEW ECOSYSTEM APPEARED ON EARTH

518	00:26:19:02	00:26:20:15 THE GRASSLANDS.
519	00:26:20:17	00:26:23:13 MOVING IN
		TO FORAGE THIS ENVIRONMENT.
520	00:26:23:15	00:26:24:29 THE HORSE GREW LARGER,
521	00:26:25:01	00:26:27:08 AND THROUGH TIME,
		DEVELOPED HOOVES
522	00:26:27:10	00:26:29:21 TO REPLACE TOES.
523	00:26:32:17	00:26:34:29 THIS PERMITTED HORSES
		TO RUN SWIFTLY
524	00:26:35:01	00:26:37:14 WITH BETTER CHANCE
-		OF SURVIVAL IN THE OPEN.
525	00:26:37:16	00:26:39:28 THE IDEA THAT SPECIES
0_0	00120101110	GRADUALLY CHANGED
526	00:26:40:00	00:26:42:20 TO BETTER SUIT
0_0	00120110100	THEIR NATURAL HABITATS
527	00.26.42.22	00:26:45:05 WAS FIRST DESCRIBED
•=-		BY CHARLES DARWIN
528	00.26.42.02	00:26:47:14 SOME 150 YEARS AGO
529	00.26.47.16	00:26:50:09 THE MAIN THING
020	00.20.11.10	
530	00.26.20.11	00:26:53:13 TO OUR IDEA
000	00.20.00.11	OF LIFE IN THE PAST
531	00.26.53.15	00:26:54:28 AND WHAT HAPPENED
532	00.26.55.00	00:26:57:27 WAS THE METHOD
002	00.20.00.00	OF EVOLUTION
533	00.26.57.29	00.27.03.12 UM PRIOR TO DARWIN'S
000	00.20.01.20	UH IDEA OF EVOLUTION
534	00:27:03:14	00:27:06:26 UM. WE KNEW THAT PLANTS
	00121100111	AND ANIMALS CHANGED.
535	00:27:06:28	00:27:09:26 UH. WE KNEW THAT
		THEY VARIED OVER TIME.
536	00:27:09:28	00:27:12:13 BUT WE DIDN'T REALLY
		HAVE AN IDEA
537	00:27:12:15	00:27:14:12 AS TO WHY THEY CHANGED.
538	00:27:14:14	00:27:16:22 AND DARWIN
	••••	GAVE US THE METHOD.
539	00:27:16:24	00:27:20:12 DARWIN OBSERVED THAT WITHIN
		EVERY POPULATION OF ANIMALS.
540	00:27:20:14	00:27:22:27 THERE IS A RANGE
		OF CHARACTERISTICS.
541	00:27:22:29	00:27:27:01 BE IT DIFFERENT HEIGHTS.
		AGILITY, OR HAIR COLOR.
542	00:27:27:03	00:27:30:12 THOSE ANIMALS WHOSE FEATURES
		MOST EXPOSE THEM TO DANGER
543	00:27:30:14	00:27:33:12 TEND TO DIE OUT,
		LEAVING FEW OFFSPRING.
544	00:27:33:14	00:27:34:27 THOSE ANIMALS
545	00:27:34:29	00:27:36:27 WITH MORE FAVORABLE
		FEATURES SURVIVE,
546	00:27:36:29	00:27:38:15 AND THROUGH REPRODUCTION,
547	00:27:38:17	00:27:41:20 PASS ON THESE CHARACTERISTICS
		TO FUTURE GENERATIONS.
548	00:27:43:01	00:27:45:13 BUT FEATURES FAVORABLE
		AT ONE TIME
549	00:27:45:15	00:27:47:04 WON'T BE FAVORABLE
		DURING ANOTHER,

550	00:27:47:06	00:27:49:17 AND SO ANIMALS EVOLVE.
551	00:27:49:19	00:27:53:09 YET DARWIN'S MODEL
		HAS RUN INTO SOME DIFFICULTY.
552	00:27:55:26	00:27:58:25 DARWIN WAS A GRADUALIST,
553	00:27:58:27	00:28:01:24 AND THAT IS
		HE THOUGHT THAT EVOLUTION
554	00:28:01:26	00:28:04:11 PROCEEDED VERY SLOWLY,
555	00:28:04:13	00:28:07:10 AND BECAUSE OF THAT,
		HIS THEORY OF EVOLUTION
556	00:28:07:12	00:28:10:09 REQUIRED A GREAT DEAL
		OF GEOLOGICAL TIME.
557	00:28:10:11	00:28:12:10 HOWEVER,
		WHEN PALEONTOLOGISTS
558	00:28:12:12	00:28:14:25 CAREFULLY EXAMINED
		THE FOSSIL RECORD
559	00:28:14:27	00:28:16:24 LOOKING FOR
		THOSE INTERMEDIATES
560	00:28:16:26	00:28:20:25 THAT WOULD OCCUR
		BETWEEN SPECIES,
561	00:28:20:27	00:28:23:10 THEY COULDN'T FIND
		THESE INTERMEDIATES.
562	00:28:23:12	00:28:24:24 MOST PALEONTOLOGISTS
563	00:28:24:26	00:28:27:09 BLAME LACK
		OF INTERMEDIATES
564	00:28:27:11	00:28:29:24 ON AN INCOMPLETE
		FOSSIL RECORD,
565	00:28:29:26	00:28:31:21 BUT AFTER MORE
		CAREFUL STUDY,
566	00:28:31:23	00:28:34:21 THERE WAS A REALIZATION
		THAT THESE TRANSITIONAL FORMS
567	00:28:34:23	00:28:36:11 SIMPLY DON'T EXIST.
568	00:28:37:28	00:28:41:07 THIS BROUGHT ABOUT THE IDEA
		OF PUNCTUATED EQUILIBRIUM.
569	00:28:41:09	00:28:44:10 THAT ONCE
		A SPECIES APPEARED,
570	00:28:44:12	00:28:48:11 IT LASTED FOR
		A LONG TIME UNCHANGED.
571	00:28:48:13	00:28:51:23 THEN SUDDENLY, IN TERMS
		OF GEOLOGICAL TIME,
572	00:28:51:25	00:28:53:07 A NEW SPECIES APPEARED,
573	00:28:53:09	00:28:56:08 AND THERE WAS VERY LITTLE,
		IF ANY, EVIDENCE
574	00:28:56:10	00:28:58:04 FOR THE INTERMEDIATES.
575	00:28:58:06	00:29:02:07 TODAY, PUNCTUATED EQUILIBRIUM
		HAS BEEN ADDED
576	00:29:02:09	00:29:03:24 TO DARWIN'S THEORY
577	00:29:03:26	00:29:06:23 TO ACCOUNT FOR CHANGE
		SEEN IN THE FOSSIL RECORD.
578	00:29:06:25	00:29:08:22 NOT ONLY CAN LIFE
		EVOLVE GRADUALLY,
579	00:29:08:24	00:29:10:10 BUT IN A WORLD
580	00:29:10:12	00:29:13:01 WHERE RAPID ENVIRONMENTAL
		CHANGE SOMETIMES OCCURS,
581	00:29:13:03	00:29:15:23 RAPID EVOLUTION
		CAN ALSO TAKE PLACE.
582	00:29:15:25	00:29:18:23 THE HISTORY OF LIFE

		OVER GREAT	LENGTHS OF TIME
583	00:29:18:25	00:29:21:08	IS GOVERNED
		BY THE NEED	TO ADAPT
584	00:29:21:10	00:29:22:22	OR DIE OUT.
585	00:29:26:26	00:29:28:09	DURING THE PLEISTOCENE,
586	00:29:28:11	00:29:31:08	ICE-AGE MAMMALS
		DOMINATED T	HE CONTINENTS.
587	00:29:31:10	00:29:33:23	THESE INCLUDED MASTODONS,
		MAMMOTHS,	
588	00:29:33:25	00:29:36:08	GROUND SLOTHS,
		AND SABER-TO	OOTH CATS.
589	00:29:36:10	00:29:39:08	THEY SUDDENLY DISAPPEARED
		ABOUT 8,000 Y	YEARS AGO.
590	00:29:39:10	00:29:41:22	THE CAUSE OF THIS
		MASS EXTINC	TION ISN'T KNOWN,
591	00:29:41:24	00:29:44:24	BUT A LIKELY POSSIBILITY
		IS THE INCREA	ASING EFFICIENCY
592	00:29:44:26	00:29:46:23	OF HUMAN HUNTERS.
593	00:29:46:25	00:29:49:07	OUR SPECIES IS, OF COURSE,
		VERY SUCCES	SSFUL,
594	00:29:49:09	00:29:51:06	AND WE'VE ENJOYED
		A RAPID RISE	IN POPULATION
595	00:29:51:08	00:29:53:21	SINCE THE END
		OF THE LAST I	ICE AGE.
596	00:29:53:23	00:29:56:06	BUT THE EVOLUTIONARY
	~~ ~~ ~~ ~~	DEVELOPMEN	T OF HUMANS
597	00:29:56:08	00:29:59:11	ISN'T WELL UNDERSTOOD BECAUSE
500	00 00 50 40	HUMAN FOSSI	LS ARE SU RARE.
598	00:29:59:13	00:30:02:05	
500	00 00 00 0 <del>7</del>	OF AN ANCES	
599	00:30:02:07	00:30:03:21	
600	00:30:03:23	00:30:06:14	
601	00.20.00.10	10051 LINELT	EVOLVED.
601	00.30.00.10		
602	00.20.00.22		
002	00.30.09.23		TIME
602	00.20.12.22	00-20-15-06	
003	00.30.12.23		
604	00.30.15.08	00.30.17.22	
004	00.50.15.00		
605	00.30.17.24	00.30.10.22	ORGANISMS LIKE THESE
005	00.30.17.24	GAVE RISE	
606	00.30.10.24	00.30.22.20	TO THE VAST VARIETY
000	00.30.13.24		
607	00.30.22.22	00.30.25.21	
007	00.00.22.22	IS TRUEY AMA	ZING
608	00.30.22.23	00.30.28.21	
000	00.00.20.20	THE MANY MA	SS EXTINCTIONS
609	00.30.28.23	00:30:31:05	
000	00.00.20.20	THROUGHOUT	
610	00:30:31.07	00:30:32.22	THE LATEST MASS FXTINCTION
611	00:30:32:24	00:30:34:21	MAY BE OCCURRING
		THIS VERY MC	DMENT.
612	00:30:34:23	00:30:36:06	THE IMPACT OF HUMANS
613	00:30:36:08	00:30:39:06	IS CAUSING SPECIES

		OF BOTH PLA	NTS AND ANIMALS
614	00:30:39:08	00:30:41:06	TO DISAPPEAR
		AT AN ASTOL	INDING RATE.
615	00:30:41:08	00:30:42:14	SCIENTISTS ESTIMATE
616	00:30:42:16	00:30:44:21	A LARGER PERCENTAGE
		OF EARTH'S S	SPECIES
617	00:30:44:23	00:30:47:06	WILL DISAPPEAR WITHIN
		OUR LIFETIM	E THAN WERE LOST
618	00:30:47:08	00:30:49:16	DURING THE MASS EXTINCTION
		OF THE DINO	SAURS.
619	00:30:49:18	00:30:52:19	SOME PEOPLE THINK OF HUMANS
		AS THE FINAL	_ PRODUCT
620	00:30:52:21	00:30:55:05	IN A LONG PROCESS
		OF ORGANIC	EVOLUTION.
621	00:30:55:07	00:30:57:05	BUT OUR SPECIES
		IS ONE BRAN	СН
622	00:30:57:07	00:30:59:19	ON THE EVOLUTIONARY
		TREE OF LIFE	
623	00:30:59:21	00:31:01:04	ORGANIC EVOLUTION
		HAS OPERAT	ED
624	00:31:01:06	00:31:03:04	SINCE LIFE FIRST APPEARED
		ON EARTH,	
625	00:31:03:06	00:31:05:19	AND BECAUSE GEOLOGIC PROCESSES
		CONTINUOUS	SLY CHANGE
626	00:31:05:21	00:31:07:19	CONDITIONS
		OF THE EART	H'S SURFACE,
627	00:31:07:21	00:31:10:19	WE CAN ONLY IMAGINE
		WHAT LIFE W	ILL BE LIKE
628	00:31:10:21	00:31:12:05	IN THE DISTANT FUTURE.
629	00:31:14:07	00:31:17:04	CAPTIONING PERFORMED BY
		THE NATIONA	AL CAPTIONING
		INSTITUTE, IN	IC.
630	00:31:17:06	00:31:20:03	CAPTIONS COPYRIGHT 1992
		THE CORPOR	ATION FOR COMMUNITY
		COLLEGE TEI	_EVISION
631	00:32:21:01	00:32:24:13	Annenberg Media
632	00:32:24:15	00:32:29:20	§
633	00:32:29:22	00:32:31:06	For information
		about this	
634	00:32:31:08	00:32:33:22	and other Annenberg
		Media program	IS
635	00:32:33:24	00:32:36:10	call 1-800-LEARNER
		and visit us at	
636	00:32:36:12	00:32:36:12	www.learner.org.