1	01:29:26:23	01:29:30:05 Annenberg Media
2	01:29:30:07	
3	01:30:24:11	01:30:27:09 DRAMATIC LANDSCAPES
		LIKE MOUNTAIN RANGES,
4	01:30:27:11	01:30:30:10 MID-OCEAN RIDGES,
		AND THE GRAND CANYON
5	01:30:30:12	01:30:32:10 ARE CREATED
_		BY EXTRAORDINARY FORCES
6	01:30:32:12	
7	01:30:34:16	
0	04-00-00-44	GENERALLY ARISE
8	01:30:36:11	01:30:38:24 FROM THE MOVEMENT OF TECTONIC PLATES,
9	01:30:38:26	01:30:41:09 AND THEY NOT ONLY
9	01.30.30.20	SHAPE THE LANDSCAPE,
10	01:30:41:11	01:30:44:24 THEY ALSO PERMANENTLY
10	01.30.41.11	DEFORM THE ROCKS
		OF THE CRUST.
11	01:30:44:26	01:30:47:24 THE ROCKS EITHER BREAK,
1 1	01.50.44.20	OR UNDER
		CERTAIN CIRCUMSTANCES,
12	01:30:47:26	
	01.00.11.20	A VERY THICK LIQUID.
13	01:30:50:27	
. •	00000	IN THIS WAY,
14	01:30:53:26	01:30:56:23 GEOLOGIC STRUCTURES
		SUCH AS FAULTS AND FOLDS
		ARE PRODUCED.
15	01:30:56:25	01:30:58:24 ROCK DEFORMATION
		IS OFTEN ACCOMPANIED
16	01:30:58:26	01:31:01:09 BY VERTICAL MOTIONS
		OF THE EARTH'S CRUST,
17	01:31:01:11	01:31:04:06 CAUSING IT EITHER
		TO RISE OR SUBSIDE.
18	01:31:04:08	01:31:06:21 UNDERSTANDING
		ROCK DEFORMATION
		AND GEOLOGIC STRUCTURES
19	01:31:06:23	01:31:09:22 IS FUNDAMENTAL TO
		THE SCIENCE OF GEOLOGY.
20	01:31:09:24	01:31:11:24 THESE STRUCTURES
		ARE EVIDENCE
04	04.04.44.00	OF IMPORTANT EVENTS
21 22	01:31:11:26 01:31:13:11	01:31:13:09 IN EARTH HISTORY, 01:31:15:24 AND BECAUSE THEY ARE
22	01.31.13.11	OFTEN RESPONSIBLE
23	01:31:15:26	01:31:18:10 FOR CONCENTRATING
23	01.51.15.20	DEPOSITS
		OF IMPORTANT RESOURCES,
24	01:31:18:12	01:31:21:25 INCLUDING PETROLEUM,
4	01.01.10.12	METALS,
		AND GROUND WATER,
25	01:31:21:27	01:31:25:04 THEY CAN BE OF IMMENSE
5	J	ECONOMIC VALUE.
26	01:31:25:06	01:31:27:24 GEOLOGIC STRUCTURES
-		ARE PATTERNS
27	01:31:27:26	

		INSIDE THE EARTH.
28	01:31:32:08	01:31:35:07 AMONG THE MOST COMMON PATTERNS
	01.01.02.00	IS PARALLEL LAYERING
29	01:31:35:09	01:31:40:22 SEEN IN SEDIMENTARY STRATA
		AND SOME VOLCANIC DEPOSITS.
30	01:31:40:24	01:31:42:08 ONE OF THE KEY INSIGHTS
31	01:31:42:10	01:31:45:22 LEADING TO THE BIRTH OF GEOLOGY
20	01:31:45:24	AS A MODERN SCIENCE 01:31:48:00 CONCERNED THE NATURE
32	01.31.43.24	OF THIS LAYERING.
33	01:31:49:29	01:31:51:27 IN THE EARLY 17th CENTURY,
34	01:31:51:29	01:31:55:08 NICOLAUS STENO,
		A DANISH MILITARY ENGINEER
35	01:31:55:10	01:31:58:25 LIVING IN ITALY, PUBLISHED
		AN IMPORTANT OBSERVATION.
36	01:32:00:24	01:32:05:22 HE NOTED THAT IN MOST PLACES
27	04.20.05.04	AT THE BOTTOM OF WATER BODIES, 01:32:08:22 SEDIMENT SETTLES TO FORM
37	01:32:05:24	CONTINUOUS FLAT-LYING LAYERS.
38	01:32:08:24	01:32:12:23 THIS EXPLAINS
00	01.02.00.21	WHY YOUNG SEDIMENTARY STRATA
39	01:32:12:25	
40	01:32:14:10	01:32:16:22 WITH THE YOUNGEST LAYER
		ON TOP
41	01:32:16:24	01:32:19:07 AND THE OLDEST
42	04.20.40.00	AT THE BOTTOM. 01:32:21:06 STENO'S OBSERVATION
42	01:32:19:09	BECAME KNOWN
43	01:32:21:08	01:32:24:14 AS THE PRINCIPLE
		OF ORIGINAL HORIZONTALITY.
44	01:32:27:07	01:32:29:04 GEOLOGISTS FIND
		THIS PRINCIPLE USEFUL
45	01:32:29:06	01:32:32:05 AS A BASIS FOR MEASURING
46	01:32:32:07	HOW MUCH DEFORMATION 01:32:34:06 HAS OCCURRED
40	01.32.32.07	IN ANCIENT STRATA.
47	01:32:34:08	
48	01:32:35:22	01:32:35:20 IF LAYERS ARE FOLDED, 01:32:37:05 GEOLOGISTS ASSUME
49	01:32:37:07	01:32:41:05 THAT THE LAYERS WERE
		ONCE NEARLY HORIZONTAL,
50	01:32:41:07	01:32:43:11 AND THAT THE FOLDING
		CAME LATER.
51	01:32:45:07	
52	01:32:46:23	01:32:49:06 WE'RE ABOUT 30 FEET WEST.
53	01:32:49:08	01:32:52:02 TO ACCURATELY MEASURE
00	01.02.10.00	AND RECORD DEFORMATION.
54	01:32:52:04	01:32:54:04 GEOLOGISTS USE
		A SMALL INSTRUMENT
55	01:32:54:06	01:32:57:03 WHICH COMBINES A COMPASS
	04.00 == 0=	WITH A HAND LEVEL.
56	01:32:57:05	01:32:59:18 THIS INSTRUMENT,
57	01:32:59:20	CALLED A POCKET ALIDADE, 01:33:02:05 MEASURES TWO ASPECTS
57	01.32.39.20	OF THE ORIENTATION
58	01:33:02:07	

59	01:33:04:08	
60	01:33:07:04	01:33:11:05 ONE OF THE THINGS WE ALWAYS
		WANT TO DO WITH STRUCTURES
61	01:33:11:07	01:33:13:23 IS TO MEASURE THEIR ORIENTATION
01	01.55.11.07	IN THE FIELD.
00	04-00-40-05	
62	01:33:13:25	01:33:17:22 THE WAY WE USUALLY DO THAT
		IS TO MEASURE TWO ANGLES,
63	01:33:17:24	01:33:20:21 CALLED THE STRIKE
		AND THE DIP OF A SURFACE.
64	01:33:20:23	01:33:23:21 I'LL TAKE THE UPPER BLOCK
		AND REMOVE IT.
65	01:33:23:23	01:33:28:20 THEN WE CAN LOOK AT THE SURFACE
		OF THE FAULT ITSELF HERE,
66	01:33:28:22	· · · · · · · · · · · · · · · · · · ·
67	01:33:30:23	01:33:33:01 OUR TWO ANGLES AGAIN
07	01.33.30.23	
00	04 00 00 00	ARE THE STRIKE.
68	01:33:33:03	01:33:36:02 THE STRIKE IS MEASURED
		FROM A HORIZONTAL LINE
69	01:33:36:04	01:33:39:04 LYING WITHIN THAT PLANE
		TO TRUE NORTH,
70	01:33:39:06	01:33:42:04 SO IT'S AN ANGLE
		BETWEEN THAT LINE
71	01:33:42:06	01:33:44:03 AND WHATEVER DIRECTION
	01.00.12.00	NORTH IS,
72	01:33:44:05	01:33:46:17 AND IT FIXES
12	01.33.44.03	THE ORIENTATION OF THE PLANE
70	04-00-40-40	
73	01:33:46:19	01:33:48:01 IN THIS DIRECTION.
74	01:33:48:03	01:33:50:18 THE OTHER ANGLE
		WE NEED TO MEASURE
75	01:33:50:20	01:33:52:17 IS WHAT'S CALLED THE DIP.
76	01:33:52:19	01:33:54:19 THAT'S THE ANGLE
		BETWEEN A LINE
77	01:33:54:21	01:33:56:04 PERPENDICULAR
		TO THE STRIKE LINE
78	01:33:56:06	01:33:57:20 AND A HORIZONTAL PLANE.
79	01:33:57:22	01:34:00:03 IT'S AN ANGLE
13	01.00.01.22	FROM THE HORIZONTAL
00	04-04-00-05	
80	01:34:00:05	01:34:01:18 DOWN TO THE PLANE,
81	01:34:01:20	01:34:04:08 AND IT FIXES
		THE ORIENTATION OF THE PLANE
82	01:34:04:10	
83	01:34:05:26	01:34:10:23 SO STRIKE FROM TRUE NORTH,
		AND DIP FROM HORIZONTAL.
84	01:34:10:25	01:34:16:03 GEOLOGIC MAPS REQUIRE MORE
		THAN STRIKE AND DIP SYMBOLS
85	01:34:16:05	01:34:18:21 TO INDICATE DEFORMATION.
86	01:34:18:23	01:34:21:03 THEY ALSO INCLUDE FAULTS
00	01.54.10.25	AND THE CONTACTS
0.7	04.04.04.05	01:34:24:06 BETWEEN DIFFERENT LAYERS
87	01:34:21:05	
	04 04 00 0=	AND BODIES OF ROCK.
88	01:34:26:25	01:34:30:15 WHEN COLORED IN, SUCH MAPS
		PROVIDE POWERFUL INSIGHTS
89	01:34:30:17	01:34:33:02 INTO THE OVERALL
		GEOLOGICAL STRUCTURE
90	01:34:33:04	
91	01:34:37:18	01:34:41:16 TO LOCATE THE GEOLOGIC
٠.	5567.10	

		STRUCTURES IN AN AREA LIKE THIS,
92	01:34:41:18	01:34:44:01 A GEOLOGIST FIRST LOOKS
02	01.01.11.10	FOR PATTERNS
93	01:34:44:03	01:34:47:02 IN THE DISTRIBUTION OF ROCKS
50	01.04.44.00	AT THE EARTH'S SURFACE.
94	01:34:47:04	01:34:49:17 BECAUSE SOIL AND VEGETATION
54	01.04.47.04	USUALLY CONCEAL ROCKS
95	01:34:49:19	01:34:51:02 WE NEED TO SEE,
96	01:34:51:04	01:34:53:16 THIS TYPE OF ANALYSIS
00	01.01.01.01	CAN'T BE DONE
97	01:34:53:18	01:34:56:01 FROM AN AIRPLANE
0,	01.01.00.10	OR A SATELLITE.
98	01:34:56:03	01:34:57:15 INSTEAD, GEOLOGISTS
00	01.01.00.00	SPEND TIME
99	01:34:57:17	01:34:59:16 STUDYING ROCKS
00	01.01.07111	ON THE GROUND.
100	01:34:59:18	01:35:01:16 INFORMATION ABOUT
		INDIVIDUAL ROCK EXPOSURE
101	01:35:01:18	01:35:05:17 OR OUTCROP, IS RECORDED
	01.00.01.10	THEN PLOTTED ON A BASE MAP.
102	01:35:05:19	01:35:07:17 CONSTRUCTED
.02	01.00.00.10	OUTCROP BY OUTCROP,
103	01:35:07:19	01:35:11:03 THIS INFORMATION EVENTUALLY
	0.1.00101110	BECOMES A GEOLOGIC MAP.
104	01:35:18:19	01:35:20:02 THE DIFFERENT COLORS SHOW
105	01:35:20:04	01:35:22:28 HOW ROCKS OF DIFFERENT TYPES
100	01.00.20.01	AND AGES ARE DISTRIBUTED
106	01:35:23:00	01:35:24:19 THROUGHOUT THE AREA.
107	01:35:24:21	01:35:29:01 THESE ROCKS ARE DESCRIBED HERE
107	01.00.24.21	IN THE MAP EXPLANATION.
108	01:35:29:03	01:35:31:24 FAULTS ARE SHOWN
100	01.33.23.03	AS DARK LINES.
109	01:35:34:21	01:35:35:29 AND SPECIAL SYMBOLS
103	01.00.04.21	INDICATE
110	01:35:36:01	01:35:39:08 WHERE ROCKS
110	01.33.30.01	ARE TILTED AND FOLDED.
111	01:35:44:02	01:35:45:29 HERE AT THE GRAND CANYON,
112	01:35:46:01	01:35:49:14 THE COLORADO RIVER HAS CUT DOWN
112	01.33.40.01	THROUGH THE ROCKS,
113	01:35:49:16	01:35:50:29 SHOWING US
110	01.55.45.10	WHAT'S UNDERGROUND,
114	01:35:51:01	01:35:52:29 BUT EXPOSURES LIKE THESE
117	01.00.01.01	ARE RARE.
115	01:35:53:01	01:35:55:00 IN MOST PLACES,
110	01.00.00.01	SURFACE INFORMATION
116	01:35:55:02	01:35:56:29 FROM THE GEOLOGIC MAP
110	01.00.00.02	IS USED
117	01:35:57:01	01:35:58:29 TO INFER THE UNDERGROUND
117	01.00.07.01	DISTRIBUTION
118	01:35:59:01	01:36:00:15 OF ROCKS AND STRUCTURES.
119	01:36:00:17	01:36:02:29 THAT'S DONE
115	31.00.00.17	WITH A GEOLOGIC CROSS-SECTION,
120	01:36:03:01	01:36:05:13 WHERE THE GEOLOGIST
120	31.00.00.01	HAS CONCEPTUALLY SLICED
121	01:36:05:15	01:36:09:14 THE EARTH OPEN TO REVEAL
141	01.00.00.10	THE STRUCTURE OF ITS INTERIOR.
		SINGSTONE OF THE INVENTOR.

122	01:36:09:16	01:36:12:15 MANY DIFFERENT CROSS-SECTIONS CAN BE DRAWN
123	01:36:12:17	01:36:15:14 TO FIT THE SAME PATTERN OF SURFACE EXPOSURE.
124	01:36:17:01	01:36:19:29 BUT GEOLOGISTS RECOGNIZE THAT THE SIMPLEST ONE
125	01:36:20:01	01:36:22:28 USUALLY TURNS OUT TO BE THE MOST ACCURATE,
126	01:36:23:00	01:36:25:24 AND IN MOST CASES, EVIDENCE FROM DRILLING
127	01:36:25:26	01:36:29:22 OR SEISMIC SOUNDING VALIDATES THIS ASSUMPTION.
128	01:36:32:02	01:36:35:29 THE PROCESS OF CHOOSING THE SIMPLEST EXPLANATION
129	01:36:36:01	01:36:37:27 FROM A GROUP OF POSSIBILITIES
130	01:36:37:29	01:36:40:18 IS NOT UNIQUE TO GEOLOGY.
131	01:36:40:20	01:36:43:18 THIS APPROACH IS USED THROUGHOUT THE SCIENCES
132	01:36:43:20	01:36:45:11 FOR SOLVING DIFFERENT PROBLEMS.
133	01:36:45:13	01:36:46:28 TWO SECONDS.
134	01:36:47:00	01:36:46:28 TWO SECONDS. 01:36:48:13 FAULT LOOKS GOOD. 01:36:50:28 <i>BUT DRAWING CROSS-SECTIONS</i>
135	01:36:48:15	01:36:50:28 BUT DRAWING CROSS-SECTIONS
100	01.00.40.10	INVOLVES MORE
136	01:36:51:00	01:36:53:00 THAN JUST APPLYING THIS TECHNIQUE.
137	01:36:53:02	01:36:55:29 A KNOWLEDGE OF COMMON TYPES OF GEOLOGICAL STRUCTURES
138	01:36:56:01	01:36:58:02 IS ALSO ESSENTIAL.
139	01:36:59:17	01:37:02:28 GEOLOGISTS RECOGNIZE THREE MAIN CLASSES OF STRUCTURE
140	01:37:03:00	01:37:06:21 CAUSED BY DEFORMATION IN EARTH'S CRUST
141	01:37:06:23	01:37:09:11 <i>UNCONFORMITIES</i> ,
142	01:37:09:13	01:37:12:04 FAULTS AND FRACTURES,
143	01:37:12:06	01:37:14:04 AND FOLDS.
144	01:37:18:29	01:37:22:28 WE USUALLY THINK OF ROCKS
		AS BEING HARD AND BRITTLE.
145	01:37:23:00	01:37:26:26 THEY BREAK WHEN A FORCE
140	01.07.20.00	SUCH AS A HAMMER BLOW
146	01:37:26:28	
		OF THE ROCK ITSELF,
147	01:37:29:12	01:37:32:25 BUT IF ROCKS ARE HOT OR UNDER GREAT PRESSURE,
148	01:37:32:27	01:37:35:09 OR IF THEY'RE EXPOSED TO STRESS GRADUALLY
149	01:37:35:11	01:37:37:10 OVER A LONG PERIOD OF TIME,
150	01:37:37:12	01:37:39:26 A SURPRISING TYPE OF DEFORMATION TAKES PLACE.
151	01:37:39:28	01:37:42:25 THE ROCKS CAN ACTUALLY BEND OR FLOW,
152	01:37:42:27	,
153	01:37:45:14	

151	04.07.40.40	MANY DIFFERENT SHAPES,
154	01:37:48:16	01:37:52:03 RANGING IN SIZE FROM A FEW CENTIMETERS
155	01:37:52:05	
156	01:37:56:06	01:37:54:10 TO SEVERAL KILOMETERS ACROSS. 01:37:59:03 AMONG THE MANY COMPLEX PATTERNS
100	01.07.00.00	OF FOLDING, HOWEVER,
157	01:37:59:05	01:38:03:21 GEOLOGISTS RECOGNIZE
		SEVERAL BASIC FORMS.
158	01:38:03:23	01:38:08:10 THESE INCLUDE SYNCLINES,
		WITH DOWN-FOLDED LAYERING,
159	01:38:08:12	· · · · · · · · · · · · · · · · · · ·
		HAVING UP-FOLDED LAYERING.
160	01:38:12:15	
101	04.20.47.00	ALONG ANY LAYER IN A FOLD
161 162	01:38:17:00	01:38:20:09 IS CALLED THE FOLD HINGE.
102	01:38:20:11	01:38:23:08 LINKED TOGETHER, THE MANY DIFFERENT HINGE LINES
163	01:38:23:10	01:38:27:07 OF A FOLD MAKE UP
100	01.30.23.10	THE FOLD'S HINGE PLANE.
164	01:38:27:09	
165	01:38:28:29	
		CAN BE SEEN AT A GLANCE.
166	01:38:34:11	01:38:36:24 THE ORIENTATION
		OF THE HINGES
167	01:38:36:26	01:38:39:08 AND HINGE PLANE
		OF A FOLD,
168	01:38:39:10	01:38:41:08 AND THE AMOUNT
160	04.20.44.40	OF FOLDING ITSELF,
169	01:38:41:10	01:38:45:08 SERVE AS A BASIS FOR FURTHER CLASSIFYING THE FOLD.
170	01:38:45:10	01:38:48:09 WE CAN CLASSIFY FOLDS
170	01.30.43.10	BASED ON THEIR ORIENTATIONS,
171	01:38:48:11	01:38:52:09 WHETHER CERTAIN PARTS
		OF THE FOLD TEND TO BE UPRIGHT
172	01:38:52:11	01:38:56:07 OR WE COULD TURN THE FOLD
		OVER, OR ON ITS SIDE.
173	01:38:56:09	01:38:59:08 THOSE WOULD ALL BE
		DIFFERENT TYPES OF FOLDS
174	01:38:59:10	01:39:01:08 AND GIVE US DIFFERENT
475	04:00:04:40	INFORMATION.
175	01:39:01:10	01:39:05:09 WE CAN ALSO LOOK AT THE GEOMETRIES OF THE FOLDS.
176	01:39:05:11	01:39:08:09 FOR INSTANCE, WE CAN LOOK
170	01.59.05.11	AT HOW TIGHT
177	01:39:08:11	01:39:09:23 THE LAYERING IS FOLDED.
178	01:39:09:25	01:39:12:23 HERE'S SOMETHING WHERE
		THE LAYERING IS RATHER OPEN.
179	01:39:12:25	01:39:16:07 WE GET THESE CURVED HINGES
		IN HERE
180	01:39:16:09	01:39:18:08 AND VERY PLANAR LIMBS.
181	01:39:19:28	01:39:22:26 WE COULD CONTRAST
400	04-00-00-00	THIS TYPE OF FOLD
182	01:39:22:28	01:39:26:08 WITH SOMETHING
102	01.20.26.40	THAT LOOKED LIKE THIS 01:39:28:08 WHERE THE FOLDS
183	01:39:26:10	ARE MUCH TIGHTER,
		AIL MOOII HOITEIN,

184	01:39:28:10	01:39:31:08 UH, YOU COULD PROBABLY GUESS
185	01:39:31:10	01:39:33:18 FROM COMPARING THESE TWO ROCKS
186	01:39:33:20	01:39:36:09 THAT THIS ONE'S BEEN DEFORMED A LOT MORE
187	01:39:36:11	01:39:38:24 OR SHORTENED MORE IN THIS DIRECTION
188	01:39:38:26	01:39:40:24 THAN THE OTHER FOLD I SHOWED YOU.
189	01:39:40:26	01:39:43:23 THE SAME TECTONIC FORCES THAT FOLD ROCKS
190	01:39:43:25	01:39:46:08 CAN ALSO CAUSE ROCKS TO BREAK.
191	01:39:46:10	01:39:48:23 ROCKS TEND TO FRACTURE INSTEAD OF FOLD
192	01:39:48:25	01:39:51:10 WHEN THE FORCE IS APPLIED RAPIDLY.
193	01:39:51:12	01:39:55:10 THIS IS ESPECIALLY TRUE IN THE SHALLOW PORTIONS
		OF EARTH'S CRUST,
194	01:39:55:12	01:39:58:08 WHERE ROCKS
		ARE RELATIVELY COLD AND UNDER LOW PRESSURE.
195	01:39:58:10	01:40:00:22 WHEN TECTONIC STRESS
195	01.39.30.10	IS APPLIED CONSTANTLY
196	01:40:00:24	01:40:02:23 OVER A LONG PERIOD OF TIME,
197	01:40:02:25	01:40:05:23 THE FRACTURES
		ARE CONCENTRATED
		ALONG A DISCREET ZONE
198	01:40:05:25	01:40:07:10 CALLED A FAULT.
199	01:40:07:12	01:40:10:10 SOME FAULTS REMAIN ACTIVE
		FOR MILLIONS OF YEARS,
200	01:40:10:12	01:40:13:09 RESULTING IN HUNDREDS
		OR EVEN THOUSANDS
004	04-40-40-44	OF KILOMETERS
201	01:40:13:11	01:40:14:10 OF DISPLACEMENT,
202	01:40:14:12	01:40:16:09 AND FAULT MOVEMENT GENERALLY OCCURS
203	01:40:16:11	
203	01.40.10.11	OF STEPS OR JUMPS,
204	01:40:19:09	01:40:21:15 GENERATING
204	01.40.10.00	A SERIES OF EARTHQUAKES.
205	01:40:21:17	01:40:24:21 <i>LIKE FOLDS</i> ,
_00	01110121111	FAULTS ARE CLASSIFIED
206	01:40:24:23	01:40:27:06 ACCORDING TO
		THEIR PHYSICAL ORIENTATION.
207	01:40:27:08	01:40:30:01 THIS INCLUDES THE DIP
		OF THE FAULT PLANE
208	01:40:30:03	01:40:32:29 AND THE DIRECTION OF OFFSET CREATED BY MOVEMENT
209	01:40:33:01	
210		01:40:39:24 FOR EXAMPLE,
211	01:40:39:26	01:40:42:17 RUPTURES ALONG WHICH
-		VERTICAL MOTION HAS OCCURRED

212	01:40:42:19	01:40:45:03 ARE CALLED DIP-SLIP FAULTS.
213	01:40:46:23	01:40:49:22 RUPTURES ALONG WHICH
		HORIZONTAL MOTION HAS OCCURRED
214	01:40:49:24	01:40:52:05 ARE CALLED
		STRIKE-SLIP FAULTS.
215	01:40:54:23	01:40:56:21 MANY FAULTS
		SHOW SOME COMBINATION
216	01:40:56:23	01:41:00:09 <i>OF BOTH DIP-SLIP</i>
		AND STRIKE-SLIP MOTION.
217	01:41:00:11	01:41:03:22 THESE ARE CALLED
		OBLIQUE-SLIP FAULTS.
218	01:41:05:08	01:41:07:21
0.4.0	04 44 07 00	HAVE FOUND IT USEFUL
219	01:41:07:23	
000	04.44.40.44	EVEN FURTHER.
220	01:41:12:11	01:41:14:21 STRIKE-SLIP FAULTS,
224	04.44.44.00	FOR EXAMPLE, ARE SUBDIVIDED 01:41:17:22 ACCORDING TO WHETHER
221	01:41:14:23	THEIR DIRECTION OF OFFSET
222	01:41:17:24	01:41:20:22 IS TO THE LEFT
222	01.41.17.24	OR THE RIGHT.
223	01:41:22:07	01:41:25:25 IN THE CASE OF STEEPLY-INCLINED
223	01.41.22.07	DIP-SLIP FAULTING.
224	01:41:25:27	
225	01:41:29:00	01:41:31:19 WE CAN HAVE WHAT WE CALL
	01111120100	REVERSE FAULTS,
226	01:41:31:21	01:41:34:21 WHERE THE BLOCK
		ABOVE THE FAULT SURFACE
227	01:41:34:23	01:41:37:27 IS MOVING UP RELATIVE
		TO THE LOWER BLOCK.
228	01:41:37:29	01:41:39:13 THE OTHER POSSIBILITY,
		OBVIOUSLY,
229	01:41:39:15	01:41:41:06 IS THAT WE CAN TAKE
		THIS UPPER BLOCK
230	01:41:41:08	01:41:46:03 AND MOVE IT DOWN, WHICH
		WE CALL A NORMAL FAULT. O.K.?
231	01:41:46:05	01:41:49:18 WE CAN ALSO, IF WE TAKE
000	04 44 40 00	THAT THIRD ORIENTATION,
232	01:41:49:20	01:41:53:18 WHERE I ROTATE MY FAULT SURFACE
222	01:41:53:20	TO A HORIZONTAL DIRECTION, 01:41:55:19 OR OFTEN, THEY'RE NOT
233	01.41.55.20	01:41:55:19 OR OFTEN, THEY'RE NOT PERFECTLY HORIZONTAL,
234	01:41:55:21	01:41:58:04 BUT THE DIP IS VERY LOW,
235	01:41:58:06	01:41:38:04 BOT THE BIF IS VERY LOW, 01:42:00:19 WE'LL HAVE
200	01.41.50.00	WHAT WE CALL THRUST FAULTS.
236	01:42:00:21	01:42:02:18 IF MY UPPER BLOCK
200	01112100121	MOVES UP
237	01:42:02:20	01:42:05:04 WITH RESPECT
	• • • • • • • • • • • • • • • • • • • •	TO THE LOWER BLOCK
238	01:42:05:06	01:42:08:04 IF WE MOVE IT
		IN THE OTHER DIRECTION
239	01:42:08:06	01:42:10:28 SO THE UPPER BLOCK'S
		MOVING DOWN THE DIP
240	01:42:11:00	01:42:12:20 OF MY LOW-ANGLE SURFACE,
241	01:42:12:22	01:42:15:04 WE CAN HAVE
		LOW-ANGLE DETACHMENT FAULTS.

242	01:42:15:06	01:42:19:18 IN EACH CASE, WE ARE CHANGING
		THE SHAPE OF THE ROCK
243	01:42:19:20	
244	01:42:21:05	01:42:23:17 DEPENDING ON THE ORIENTATION
		OF THE FAULT SURFACE
245	01:42:23:19	01:42:25:01 AND THE DIRECTION
		OF DISPLACEMENT.
246	01:42:25:03	01:42:28:06 THE MANY CATEGORIES
		OF FOLDS AND FAULTS
247	01:42:28:08	
248	01:42:29:23	01:42:33:02 LONG BEFORE GEOLOGISTS
		HAD A CLEAR KNOWLEDGE
249	01:42:33:04	01:42:36:00 <i>OF HOW AND WHY</i>
		THESE STRUCTURES FORMED.
250	01:42:36:02	01:42:38:29 EVEN TODAY, THE ORIGIN
054	04 40 00 04	OF MANY GEOLOGIC STRUCTURES
251	01:42:39:01	
252	01:42:42:18	01:42:45:07 BUT GEOLOGISTS DO KNOW THAT STRESS,
253	01:42:45:09	·
200	01.42.43.03	OF FORCE, PLAYS A ROLE.
254	01:42:51:04	•
204	01.42.01.04	AND TENSIONAL STRESSES
255	01:42:54:18	01:42:56:16 WE'RE REALLY TALKING
200	01112101110	ABOUT THE STRESSES
256	01:42:56:18	
257	01:42:58:04	01:43:01:03 OR THE STRESSES OPERATING
_0.	01112100101	ON A BLOCK OF ROCK.
258	01:43:01:05	01:43:04:03 I MIGHT USE MY LITTLE
		FOAM MODEL HERE.
259	01:43:04:05	01:43:07:02 IN THE CASE OF
		COMPRESSIONAL STRESSES,
260	01:43:07:04	01:43:09:01 THAT'S WHERE
		WE HAVE STRESSES
261	01:43:09:03	01:43:12:02 DIRECTED TOWARDS
		OUR LITTLE BLOCK OF ROCK
262	01:43:12:04	
263	01:43:14:03	
		IN ALL THREE DIMENSIONS.
264	01:43:19:05	01:43:21:17 TENSIONAL STRESSES
		ARE THE EXACT OPPOSITE.
265	01:43:21:19	01:43:24:01 INSTEAD OF SQUEEZING
000	04 40 04 00	THE ROCK TOGETHER,
266	01:43:24:03	01:43:27:00 THEY'RE TRYING TO PULL
007	04.40.07.00	THE ROCK APART.
267	01:43:27:02	01:43:29:00 THE STRESSES
000	04 40 00 00	ARE DIRECTED OUTWARD,
268	01:43:29:02	01:43:30:29 AWAY FROM THE ROCK.
269	01:43:33:02	01:43:35:29 GEOLOGIC STRUCTURES
270	01:43:36:01	LIKE FOLDS AND FAULTS 01:43:38:01 ARE EXAMPLES OF STRAIN
270 271	01:43:38:03	01:43:36:01 ARE EXAMPLES OF STRAIN 01:43:41:01 A CHANGE IN
Z1 1	01.40.00.00	THE SHAPE OF A ROCK
272	01:43:41:03	01:43:42:15 CAUSED BY STRESS.
272	01:43:41:03	01:43:46:21 STRESS IS THE APPLICATION
213	01.70.40.24	OF FORCE ON AN AREA.
		C. I GROL GIVILLIA

274	01:43:46:23	01:43:49:00 IF YOU LEAN AGAINST A WALL,
275	01:43:49:02	01:43:50:27 YOU'RE PUTTING SOME
276	01:43:50:29	
277	01:43:53:14	THE WALL MOVES. 01:43:56:09 STRAIN IS THE CHANGE
278	01:43:56:11	
279	01:43:59:17	A STRESS HAS BEEN APPLIED 01:44:01:14 TO AN OBJECT,
280	01:44:01:16	
281	01:44:03:17	
282	01:44:05:17	ITS ORIGINAL SHAPE. 01:44:09:00 ELASTIC STRAIN IS WHERE
283	01:44:09:02	THE OBJECT IS DEFORMED, 01:44:11:16 AND THEN WHEN
284	01:44:11:18	THE STRESS IS REMOVED, 01:44:13:16 IT RETURNS TO ITS
285	01:44:13:18	ORIGINAL SHAPE. 01:44:16:00 IF YOU EXCEED
286	01:44:16:02	ITS ELASTIC LIMIT, 01:44:19:00 THEN THE OBJECT
287	01:44:19:02	WILL BREAK AND SHATTER. 01:44:21:14 THUS, WHEN WE SEE
288	01:44:21:16	
289	01:44:24:24	
290	01:44:27:15	WHEN THE STRAIN EXCEEDS 01:44:30:29 THE ELASTIC LIMITS
291	01:44:31:01	OF THE MATERIAL 01:44:33:13 AND THE ROCK BREAKS
292	01:44:35:15	OR FRACTURES. 01:44:37:13
293	01:44:37:15	OF GEOLOGIC STRUCTURES 01:44:39:28 RESULT FROM DIFFERENT
294	01:44:40:00	TYPES OF STRESS. 01:44:41:28 FOR EXAMPLE,
295	01:44:42:00	
296	01:44:47:01	
297	01:44:52:11	STRIKE-SLIP FAULTS TO FORM. 01:44:56:28 AND MOST FOLDS ARE FORMED
298	01:44:57:00	BY COMPRESSIVE STRESS. 01:44:59:27 WHERE THE STRESS OCCURS
299	01:45:01:14	
300	01:45:03:16	7 2 2 2 2 2 2 2
301	01:45:05:18	OF STRUCTURES, 01:45:07:13 WHEN WE'RE LOOKING AT STRUCTURES
		AI SIKUUIUKES

302	01:45:07:15	01:45:08:28 FORMING AT DEPTH,
303	01:45:09:00	01:45:11:13 BELOW THE SURFACE
		OF THE EARTH,
304	01:45:11:15	01:45:13:27 JUST BECAUSE OF
00.	01110111110	THE OVERLYING WEIGHT
305	01:45:13:29	01:45:15:13 OF THE BODY OF ROCK,
306	01:45:15:15	01:45:17:18 WE'RE USUALLY DEALING
300	01.40.10.10	WITH COMPRESSIVE STRESSES.
307	01:45:17:20	01:45:20:14 THE TYPES OF STRUCTURES
307	01.43.17.20	WE GET THERE
200	04.45.00.46	
308	01:45:20:16	01:45:21:29 ARE JUST A REFLECTION
309	01:45:22:01	01:45:24:11 OF THE DIFFERENT
		MAGNITUDES OF STRESSES,
310	01:45:24:13	01:45:27:22 COMPRESSIVE STRESSES
		IN DIFFERENT DIRECTIONS.
311	01:45:27:24	01:45:30:25 WHEN WE NEAR THE SURFACE
		OF THE EARTH,
312	01:45:30:27	01:45:32:26 WE'RE DEALING WITH
		A FREE SURFACE
313	01:45:32:28	01:45:35:11 WITH NO OVERLYING
		WEIGHT OF ROCK.
314	01:45:35:13	01:45:38:16 WE CAN SOMETIMES GET
		TENSIONAL STRESSES.
315	01:45:38:18	01:45:41:15 THESE STRESSES WILL TRY
0.0	01110100110	TO PULL APART OUR ROCK
316	01:45:41:17	01:45:43:00 IN SOME DIRECTION.
317	01:45:43:02	01:45:44:26 UNDER THOSE CIRCUMSTANCES,
318	01:45:44:28	01:45:47:26 WE CAN GET THINGS
310	01.43.44.20	
		I IVE IOINTS OF EDICTIBES
210	04.45.47.00	LIKE JOINTS OR FRACTURES
319	01:45:47:28	01:45:52:11 OR LITTLE VEINS OF DIFFERENT
		01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS
319 320	01:45:47:28 01:45:52:13	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO
320	01:45:52:13	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES,
		01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US
320 321	01:45:52:13 01:45:54:14	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES
320	01:45:52:13	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS
320 321 322	01:45:52:13 01:45:54:14 01:45:56:29	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE
320 321	01:45:52:13 01:45:54:14	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES.
320 321 322	01:45:52:13 01:45:54:14 01:45:56:29	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT
320 321 322 323	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES
320 321 322 323	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT
320 321 322 323 324	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES
320 321 322 323 324	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS
320 321 322 323 324 325	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT,
320 321 322 323 324 325	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27 01:46:07:28	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT
320 321 322 323 324 325 326	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT 01:46:11:26 WHAT THE STRESS FIELD
320 321 322 323 324 325 326 327	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27 01:46:07:28 01:46:09:29	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT 01:46:11:26 WHAT THE STRESS FIELD WAS LIKE
320 321 322 323 324 325 326	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27 01:46:07:28	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT 01:46:11:26 WHAT THE STRESS FIELD WAS LIKE 01:46:14:12 DURING THE TIME THAT
320 321 322 323 324 325 326 327 328	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27 01:46:07:28 01:46:09:29 01:46:11:28	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT 01:46:11:26 WHAT THE STRESS FIELD WAS LIKE 01:46:14:12 DURING THE TIME THAT THESE STRUCTURES FORMED.
320 321 322 323 324 325 326 327 328 329	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27 01:46:07:28 01:46:09:29 01:46:11:28 01:46:16:13	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT 01:46:11:26 WHAT THE STRESS FIELD WAS LIKE 01:46:14:12 DURING THE TIME THAT THESE STRUCTURES FORMED. 01:46:17:26 UNCONFORMITIES,
320 321 322 323 324 325 326 327 328	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27 01:46:07:28 01:46:09:29 01:46:11:28	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT 01:46:11:26 WHAT THE STRESS FIELD WAS LIKE 01:46:14:12 DURING THE TIME THAT THESE STRUCTURES FORMED. 01:46:17:26 UNCONFORMITIES, 01:46:20:11 THE THIRD GREAT CLASS
320 321 322 323 324 325 326 327 328 329 330	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27 01:46:07:28 01:46:09:29 01:46:11:28 01:46:16:13 01:46:17:28	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT 01:46:11:26 WHAT THE STRESS FIELD WAS LIKE 01:46:14:12 DURING THE TIME THAT THESE STRUCTURES FORMED. 01:46:17:26 UNCONFORMITIES, 01:46:20:11 THE THIRD GREAT CLASS OF GEOLOGIC STRUCTURE,
320 321 322 323 324 325 326 327 328 329	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27 01:46:07:28 01:46:09:29 01:46:11:28 01:46:16:13	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT 01:46:11:26 WHAT THE STRESS FIELD WAS LIKE 01:46:14:12 DURING THE TIME THAT THESE STRUCTURES FORMED. 01:46:17:26 UNCONFORMITIES, 01:46:20:11 THE THIRD GREAT CLASS OF GEOLOGIC STRUCTURE, 01:46:23:08 ARE NOT AS USEFUL
320 321 322 323 324 325 326 327 328 329 330 331	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27 01:46:07:28 01:46:09:29 01:46:11:28 01:46:16:13 01:46:17:28 01:46:20:13	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT 01:46:11:26 WHAT THE STRESS FIELD WAS LIKE 01:46:14:12 DURING THE TIME THAT THESE STRUCTURES FORMED. 01:46:17:26 UNCONFORMITIES, 01:46:20:11 THE THIRD GREAT CLASS OF GEOLOGIC STRUCTURE, 01:46:23:08 ARE NOT AS USEFUL AS FOLDS AND FAULTS
320 321 322 323 324 325 326 327 328 329 330	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27 01:46:07:28 01:46:09:29 01:46:11:28 01:46:16:13 01:46:17:28	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT 01:46:11:26 WHAT THE STRESS FIELD WAS LIKE 01:46:14:12 DURING THE TIME THAT THESE STRUCTURES FORMED. 01:46:17:26 UNCONFORMITIES, 01:46:20:11 THE THIRD GREAT CLASS OF GEOLOGIC STRUCTURE, 01:46:23:08 ARE NOT AS USEFUL AS FOLDS AND FAULTS 01:46:25:08 IN ANALYZING
320 321 322 323 324 325 326 327 328 329 330 331	01:45:52:13 01:45:54:14 01:45:56:29 01:45:58:28 01:46:01:07 01:46:04:27 01:46:07:28 01:46:09:29 01:46:11:28 01:46:16:13 01:46:17:28 01:46:20:13	01:45:52:11 OR LITTLE VEINS OF DIFFERENT TYPES OF MINERALS 01:45:54:12 THAT FLOAT INTO THESE FRACTURES, 01:45:56:27 THAT DO GIVE US SOME CLUES 01:45:58:26 ABOUT THE DIRECTIONS AND MAGNITUDE 01:46:01:05 OF TENSIONAL STRESSES. 01:46:04:25 AND SO JUST BY LOOKING AT DIFFERENT TYPES OF STRUCTURES 01:46:07:26 OR FOLDS OR JOINTS OR THINGS LIKE THAT, 01:46:09:27 WE CAN GET SOME CLUES ABOUT 01:46:11:26 WHAT THE STRESS FIELD WAS LIKE 01:46:14:12 DURING THE TIME THAT THESE STRUCTURES FORMED. 01:46:17:26 UNCONFORMITIES, 01:46:20:11 THE THIRD GREAT CLASS OF GEOLOGIC STRUCTURE, 01:46:23:08 ARE NOT AS USEFUL AS FOLDS AND FAULTS

		HAVE PROVEN
334	01:46:29:10	01:46:32:09 TO BE AN IMPORTANT KEY TO THE PAST.
335	01:46:34:03	01:46:36:09 JUST AS ASTRONOMERS ARE PREOCCUPIED
336	01:46:36:11	01:46:38:09 WITH THE IMMENSITY OF SPACE,
337	01:46:38:11	01:46:40:23 GEOLOGISTS ARE UNIQUELY FASCINATED WITH TIME
338	01:46:40:25	01:46:42:09 AND EARTH HISTORY.
339	01:46:42:11	01:46:44:08 THE FIRST GEOLOGIST
	•	TO ACTUALLY RECOGNIZE
340	01:46:44:10	01:46:46:25 THE SCALE OF GEOLOGIC TIME
341	01:46:46:27	01:46:50:02 WAS A SCOTTISH INTELLECTUAL
		NAMED JAMES HUTTON.
342	01:46:50:04	01:46:51:16 OVER A CENTURY AGO,
343	01:46:51:18	01:46:54:09 HUTTON RECOGNIZED THAT
		A SEQUENCE OF LAYERED ROCKS
344	01:46:54:11	01:46:57:24 IS A PHYSICAL RECORD OF
		SOME PORTION OF EARTH HISTORY.
345	01:46:57:26	01:46:59:09 HE ALSO PREDICTED
346	01:46:59:11	01:47:01:25 THAT IN PLACES WHERE
o	04.4-04.0-	MOUNTAIN-BUILDING HAS OCCURRED,
347	01:47:01:27	01:47:04:25 PART OF THAT RECORD
0.40	04 47 04 07	WOULD BE DESTROYED BY EROSION.
348	01:47:04:27	01:47:06:10 ARMED WITH THIS
240	04.47.00.40	HYPOTHESIS,
349	01:47:06:12	01:47:09:09 HUTTON FOUND PLACES WHERE OLD ROCKS HAD BEEN
350	01:47:09:11	01:47:11:24 COVERED BY MUCH YOUNGER
330	01.47.03.11	SEDIMENTARY ROCKS.
351	01:47:11:26	01:47:14:24 THE CONTACT BETWEEN
001	01.17.11.20	THESE TWO ROCK FORMATIONS
352	01:47:14:26	01:47:17:08 MARKED A PERIOD
	•	OF EARTH HISTORY
353	01:47:17:10	01:47:18:22 WITH NO ROCK RECORD.
354	01:47:18:24	01:47:21:18 THIS GEOLOGIC STRUCTURE
		IS CALLED AN UNCONFORMITY.
355	01:47:21:20	01:47:23:01 UNCONFORMITIES ARE FORMED
356	01:47:23:03	
		REMOVED BY EROSION,
357	01:47:25:24	
050	04 47 00 04	OF THE EROSION SURFACE
358	01:47:28:24	
250	04.47.20.47	SEDIMENTARY ROCKS.
359	01:47:30:17 01:47:32:02	01:47:32:00 THE HORIZONTAL CONTACT 01:47:34:01 SEPARATING THE LOWER
360	01.47.32.02	DARK ROCKS
361	01:47:34:03	01:47:36:15 FROM THE OVERLYING
301	01.47.34.03	CHOCOLATE-BROWN ROCKS
362	01:47:36:17	01:47:39:22 IS THE GREAT UNCONFORMITY
502	51.77.00.17	OF THE GRAND CANYON.
363	01:47:39:24	
	,	1.5 BILLION YEARS OLD.
364	01:47:43:10	01:47:45:22 AFTER THEY WERE DEPOSITED
		AS SEDIMENTS,

365	01:47:45:24	01:47:48:06 THEY WERE DEFORMED AND TECTONICALLY UPLIFTED
366	01:47:48:08	01:47:50:12 DURING A MOUNTAIN-BUILDING EPISODE.
367	01:47:50:14	01:47:53:11 EROSION THEN CARVED AWAY
368	01:47:53:13	AT THESE ROCKS, 01:47:55:06 UNTIL SEA LEVEL FINALLY ROSE
000	04 47 55 00	
369	01:47:55:08	01:47:58:08 AND FLOODED THE AREA ABOUT 500 MILLION YEARS AGO.
370	01:47:58:10	01:47:59:22 THE YOUNGER ROCK LAYERS
371	01:47:59:24	01:48:01:07 COVERING THE UNCONFORMITY SURFACE
272	04.40.04.00	01:48:03:07 ARE SANDSTONES
372	01:48:01:09	
	04.40.00.00	THAT WERE DEPOSITED
373	01:48:03:09	01:48:05:06 AT THE BOTTOM OF THAT SEA.
374	01:48:05:08	01:48:06:21 THE GREAT UNCONFORMITY
375	01:48:06:23	01:48:09:22 REPRESENTS ABOUT A BILLION
0.0	011.10.00.20	YEARS OF GEOLOGIC TIME
376	01:48:09:24	01:48:11:23 AND REVEALS
370	01.40.09.24	AN IMPORTANT CHAPTER
277	04.40.44.05	01:48:14:22 IN THE GEOLOGIC HISTORY
377	01:48:11:25	
070	04 40 47 00	OF THE GRAND CANYON.
378	01:48:17:09	01:48:18:23 THE CLASSIFICATION
	04.40.40.0=	OF UNCONFORMITIES
379	01:48:18:25	01:48:22:20 IS LESS COMPLEX THAN THAT OF FOLDS AND FAULTS.
380	01:48:22:22	01:48:26:04 EROSION, RATHER THAN STRESS,
004	04-40-00-07	CAUSES THEM TO FORM.
381	01:48:28:07	01:48:30:21 THERE'S THREE KINDS
000	04 40 00 00	OF UNCONFORMITIES,
382	01:48:30:23	01:48:33:05 THREE MAJOR KINDS
		OF UNCONFORMITIES.
383	01:48:33:07	01:48:34:21 THE MOST READILY
		RECOGNIZED
384	01:48:34:23	01:48:36:20 IS CALLED
		AN ANGULAR UNCONFORMITY,
385	01:48:36:22	01:48:38:20 WHERE YOU HAVE
		SEDIMENTARY ROCKS.
386	01:48:38:22	
		THE UNCONFORMITY
387	01:48:40:06	01:48:42:20 HAVE BEEN TILTED
		AT AN ANGLE,
388	01:48:42:22	01:48:44:05 THEY HAVE BEEN ERODED
389	01:48:44:07	01:48:46:08 THEN OVERLAIN
		BY HORIZONTAL ROCKS.
390	01:48:46:10	01:48:49:06 THE IMPLICATION IS THEN
		THAT THE SEDIMENTARY ROCKS,
391	01:48:49:08	01:48:52:20 WHICH WERE ORIGINALLY
		DEPOSITED HORIZONTALLY
392	01:48:52:22	
002	31.10.02.22	OF ORIGINAL HORIZONTALITY
393	01:48:55:07	
535	01.70.00.01	BY STRUCTURAL FORCES,
394	01:48:57:06	· · · · · · · · · · · · · · · · · · ·
J34	01.70.07.00	OT. TO. SO. TO TEOTONIOS, OF LIFT,

395	01:48:58:12	01:49:00:20 AND THEN EROSION
000	04 40 00 00	HAS TAKEN OVER,
396	01:49:00:22	01:49:02:21 TRUNCATED AND CUT OFF
007	04 40 00 00	THE EDGES.
397	01:49:02:23	
398	01:49:04:08	01:49:07:06 AND NEW LAYERS WERE
		DEPOSITED ON TOP OF THEM.
399	01:49:07:08	01:49:09:05 THE IMPLICATIONS OF
		AN ANGULAR UNCONFORMITY
400	01:49:09:07	01:49:11:19 IS THAT THERE WAS
		A GREAT TIME LAPSE
401	01:49:11:21	01:49:13:01 BETWEEN THE ORIGINAL
		DEPOSITION
402	01:49:13:03	01:49:14:16 AND THE SUBSEQUENT
		DEPOSITION.
403	01:49:14:18	01:49:17:15 IT TELL US A LOT
		OF HISTORY HAS TAKEN PLACE,
404	01:49:17:17	01:49:20:00 AND MUCH OF IT'S MISSING,
		BECAUSE OF EROSION.
405	01:49:20:02	01:49:21:14 ANOTHER KIND
		OF UNCONFORMITY
406	01:49:21:16	01:49:22:29 IS THE NONCONFORMITY.
407	01:49:23:01	01:49:25:26 THIS ONE REPRESENTS
		THE GREATEST LAPSE OF TIME
408	01:49:25:28	01:49:28:10 BETWEEN THE FORMATION
	01110120120	OF THE UNDERLYING ROCKS
409	01:49:28:12	01:49:29:25 AND THE OVERLYING ROCKS.
410	01:49:29:27	01:49:32:20 NONCONFORMITIES ARE THOSE
110	01.10.20.27	IN WHICH CRYSTALLINE ROCKS
411	01:49:32:22	01:49:35:04 EITHER METAMORPHIC
711	01.40.02.22	OR IGNEOUS ROCKS,
412	01:49:35:06	01:49:37:06 PRIMARILY PLUTONIC ROCKS
413	01:49:37:08	01:49:39:21 ARE OVERLAIN BY
710	01.43.37.00	SEDIMENTARY ROCKS.
414	01:49:39:23	01:49:41:29 PLUTONIC ROCKS
717	01.49.59.25	AND METAMORPHIC ROCKS
415	01:49:42:01	01:49:43:25 FORM DEEP IN THE EARTH
416	01:49:43:27	01:49:45:20 10, 15 KILOMETERS DEEP
417	01:49:45:22	01:49:49:05 AND IN ORDER FOR THEM
417	01.49.45.22	TO BE AT THE SURFACE,
418	01:49:49:07	
410	01.49.49.07	THE REMOVAL
419	01:49:51:23	
420	01:49:53:08	
420	01.49.55.06	
421	01:49:55:08	MILLIONS OF YEARS, 01:49:57:05 MAYBE TENS OF MILLIONS
421	01.49.55.06	OF YEARS,
400	04.40.57.07	
422	01:49:57:07	01:49:59:20 AND EVENTUALLY THOSE ROCKS
400	04 40 50 00	REACH THE SURFACE,
423	01:49:59:22	01:50:01:04 WHERE THEY'RE EXPOSED
		TO EROSION.
424		
425	01:50:03:07	
4		SEDIMENTARY ROCKS
426	01:50:05:07	
		ON TOP OF THEM,

427	01:50:07:08	01:50:10:05 SO THE TIME LAPSE THERE IS IMMENSE,
428	01:50:10:07	01:50:13:05 AND THE NUMBER OF EVENTS
400	04.50.40.07	THAT HAVE OCCURRED
429	01:50:13:07	01:50:15:05 ARE REALLY PHENOMENAL. 01:50:18:04 WHOLE MOUNTAIN RANGES
430	01:50:15:07	ARE BUILT AND THEN WORN AWAY
121	01:50:18:06	01:50:19:19 AND THEN WORN AWAY
431 432	01:50:18:06	01:50:22:18 ANOTHER KIND
432	01.50.20.26	OF UNCONFORMITY
433	01:50:22:20	
434	01:50:24:05	01:50:24:03 IS THE DISCONFORMITY, 01:50:26:17 WHERE THE LAPSE
101	01.00.24.00	BETWEEN THE DEPOSITION
435	01:50:26:19	01:50:29:18 OF THE UNDERLYING LAYERS
	0000	AND THE OVERLYING LAYERS
436	01:50:29:20	01:50:31:04 HAS BEEN VERY SHORT,
437	01:50:31:06	01:50:33:18 SO THAT THE LAYERS
		ABOVE AND BELOW
438	01:50:33:20	01:50:35:17 ARE PRETTY CLOSE
		TO PARALLEL,
439	01:50:35:19	01:50:38:03 AND THERE'S JUST
		A SLIGHT DISCORDANCE
440	01:50:38:05	01:50:39:19 BETWEEN THE TWO
441	01:50:39:21	01:50:43:17 PERHAPS A SOIL PROFILE OR
		A LITTLE BROKEN-UP MATERIAL.
442	01:50:43:19	01:50:46:18 THEY'RE A LITTLE BIT
		MORE DIFFICULT TO RECOGNIZE.
443	01:50:46:20	01:50:50:03 A SHORTER TIME LAPSE
	04 50 50 05	HAS BEEN LOST IN THE RECORD,
444	01:50:50:05	01:50:53:04 SO THEY ARE NOT
1 1 E	04.50.54.00	AS EASILY SEEN.
445 446	01:50:54:20 01:50:56:05	01:50:56:03 BY IDENTIFYING FOSSILS, 01:50:58:19 OR THROUGH RADIOMETRIC
440	01.50.56.05	AGE-DATING,
447	01:50:58:21	01:51:00:06 GEOLOGISTS CAN FIND OUT
448	01:50:50:21	01:51:04:04 APPROXIMATELY WHEN AN EXPOSED
770	01.01.00.00	UNCONFORMITY DEVELOPED.
449	01:51:04:06	01:51:06:03 BECAUSE UNCONFORMITIES
1.10	01.01.01.00	ARE CREATED
450	01:51:06:05	01:51:09:02 BY IMPORTANT CHANGES IN
		THE GEOLOGIC ENVIRONMENT,
451	01:51:09:04	·
452	01:51:10:19	01:51:13:03 HELPS GEOLOGISTS CONSTRUCT
		A CHRONOLOGY
453	01:51:13:05	01:51:16:02 <i>OF PAST EVENTS</i>
		IN EARTH'S HISTORY.
454	01:51:18:06	01:51:20:03 GEOLOGIC STRUCTURES
		ARE ALSO USEFUL
455	01:51:20:05	01:51:23:16 NOT ONLY FOR WHAT THEY
		REVEAL ABOUT EARTH'S PAST,
456	01:51:23:18	01:51:26:16 BUT BECAUSE OF THEIR
4		ECONOMIC ROLE AS WELL.
457	01:51:29:03	01:51:32:15 IN THIS REGARD, FOLDS ARE
450	04.54.05.4.4	ESPECIALLY IMPORTANT.
458	01:51:35:14	01:51:38:17 UNDERSTANDING FOLDS
		AND THE WAY THEY FORM

459	01:51:38:19	01:51:42:01 IS NOT ONLY INTRIGUING FROM
400	04 54 40 00	A SCIENTIFIC POINT OF VIEW,
460	01:51:42:03	01:51:45:00 IT CAN ALSO HAVE ENORMOUS ECONOMIC BENEFITS AS WELL.
461	01:51:45:02	01:51:47:15 THE COMPRESSIVE STRESS
401	01.01.40.02	THAT FOLDS ROCKS
462	01:51:47:17	01:51:50:16 CAN ALSO CONTRIBUTE TO
		THE FORMATION OF PETROLEUM
463	01:51:50:18	01:51:52:17 AND THE STRUCTURES
40.4	04 54 50 40	THAT TRAP IT.
464	01:51:52:19	01:51:54:16 FOR EXAMPLE,
465	01:51:54:18	MANY FOLDED REGIONS 01:51:56:02 ARE COMPOSED
405	01.51.54.16	OF ALTERNATING
466	01:51:56:04	01:51:58:16 PERMEABLE AND IMPERMEABLE
		ROCK LAYERS.
467	01:51:58:18	01:52:00:15 SOME OF
		THE PERMEABLE STRATA
468	01:52:00:17	
469	01:52:02:03	01:52:05:01 WHICH ACTUALLY FLOW
470	01:52:05:03	THROUGH THE ROCKS THEMSELVES. 01:52:07:17 IN FACT, THIS FLOW
470	01.32.03.03	IS SOMETIMES DRIVEN
471	01:52:07:19	01:52:09:02 BY THE SAME
		COMPRESSIVE STRESS
472	01:52:09:04	01:52:10:17 THAT FOLDS THE ROCK LAYERS.
473	01:52:10:19	01:52:12:17 BECAUSE PETROLEUM
474	04-50-40-40	IS LIGHTER THAN WATER,
474	01:52:12:19	01:52:15:15 IT FLOATS TO THE HIGHEST POINT IN THE FOLD
475	01:52:15:17	01:52:17:01 AND IS TRAPPED THERE
476	01:52:17:03	01:52:19:17 IF THE OVERLYING LAYER
		IS IMPERMEABLE.
477	01:52:19:19	01:52:21:01 THE INTENSELY FOLDED ROCKS
478	01:52:21:03	01:52:23:14 OF THE WESTERN
470	04 50 00 40	APPALACHIAN MOUNTAINS
479	01:52:23:16	01:52:25:28 PRODUCED THE FIRST COMMERCIAL OIL WELL
480	01:52:26:00	01:52:28:15 IN THE UNITED STATES
400	01.02.20.00	IN 1859.
481	01:52:28:17	01:52:31:15 SINCE THEN, FOLDED STRATA
		HAVE BEEN RECOGNIZED
482	01:52:31:17	01:52:34:14 AS SUPERB PETROLEUM STRUCTURES
400	04 50 04 40	ALL OVER THE WORLD,
483	01:52:34:16	01:52:38:01 AND HAVE YIELDED TREMENDOUS
484	01:52:40:15	QUANTITIES OF OIL AND GAS. 01:52:41:29
404	01.32.40.13	PETROLEUM IS FOUND
485	01:52:42:01	01:52:44:00 IN CERTAIN
		SEDIMENTARY ROCKS
486	01:52:44:02	01:52:45:24 FORMING FROM
40-		THE DECOMPOSITION
487	01:52:45:26	01:52:47:24
488	01:52:49:07	01:52:51:04 PETROLEUM, OF COURSE, IS GENERATED
489	01:52:51:06	01:52:55:00 FROM THE DEAD OR DECAYED
- 00	01.02.01.00	01.02.00.00 THOW THE DEAD ON DECATED

		REMAINS OF LIVING ORGANISMS.
490	01:52:55:02	01:52:57:29 MOST OF THAT COMES
430	01.02.00.02	FROM MICRO-ORGANISMS.
491	01:52:58:01	01:53:00:15 AS THESE ORGANISMS DIE
492	01:53:00:17	01:53:03:00 AND THEY'RE BURIED
-		WITH SEDIMENTS,
493	01:53:03:02	01:53:05:29 THEY BECOME PART OF
		THE SEDIMENTARY SECTION.
494	01:53:06:01	01:53:09:14 THOSE ORGANISMS MAY
		THE ORGANIC MATTER MAY ALSO BE
495	01:53:09:16	01:53:12:29 FROM LEAFY MATERIALS,
		WOOD MATERIALS,
496	01:53:13:01	01:53:15:00 THAT SORT OF THING.
497	01:53:15:02	01:53:17:15 ANYTHING THAT HAS
		CARBON IN IT,
498	01:53:17:17	01:53:18:29 CARBON-BASED MATERIALS.
499	01:53:19:01	01:53:20:14 HENCE THE NAME
		HYDROCARBON,
500	01:53:20:16	01:53:21:24 LIQUID CARBON.
501	01:53:23:15	01:53:25:27
500	04 50 05 00	ROCK AND WATER,
502	01:53:25:29	01:53:28:27 PETROLEUM DRIFTS UPWARDS
500	04 50 00 00	THROUGH THE POROUS SPACES
503	01:53:28:29	01:53:30:11 AND FRACTURES IN ROCKS. 01:53:33:11 SOME FINDS IT WAY
504	01:53:31:29	01:53:33:11
505	01:53:33:13	01:53:35:28 ALL THE WAY TO THE EARTH'S SURFACE,
506	01:53:36:00	01:53:37:28 WHERE IT DISSIPATES
300	01.55.50.00	INTO THE OCEANS
507	01:53:38:00	01:53:39:27 OR COLLECTS IN POOLS.
508	01:53:41:29	01:53:43:27 THE REMAINDER, HOWEVER,
000	01.00.11.20	BECOMES TRAPPED
509	01:53:43:29	01:53:46:11 BY GEOLOGIC STRUCTURES
		WITHIN THE EARTH.
510	01:53:47:29	01:53:50:12 ONE OF THE MOST
		EFFECTIVE STRUCTURES
511	01:53:50:14	01:53:52:13 FOR CREATING
		A PETROLEUM RESERVOIR
512	01:53:52:15	01:53:55:13 IS KNOWN AS
		AN ANTICLINAL TRAP.
513	01:53:55:15	
		LAYER OF ROCK
514		01:54:00:27 FORMS A CAP OVER A LAYER
515	01:54:00:29	01:54:03:26 OF POROUS, PERMEABLE
		SEDIMENTARY ROCK.
516	01:54:03:28	01:54:05:26
517	01:54:05:28	01:54:07:11
518	01:54:07:13	01:54:10:28 AND IS CAUGHT WITHIN
E10	01:54:11:00	THE FOLD OF THE ANTICLINE.
519	01.54.11.00	01:54:14:12 NATURAL GAS, WHICH IS THE LIGHTEST FORM OF PETROLEUM,
520	01:54:14:14	01:54:15:27 COLLECTS AT THE TOP.
520 521		01:54:17:26
522	01:54:20:14	01:54:22:25 WATER, WHICH IS HEAVIER
JZZ	01.07.20.14	THAN PETROLEUM,
523	01:54:22:27	· · · · · · · · · · · · · · · · · · ·
020	U1.U7.22.21	TOTAL A LATER ONDERNIENTI.

524	01:54:26:27 01:54:28:13	
525		OIL TRAPS.
526	01:54:30:13	
527	01:54:33:13	
528	01:54:37:12	01:54:39:10 LOCATING GEOLOGIC STRUCTURES
529	01:54:39:12	01:54:42:02 WHICH CAN TRAP MIGRATING PETROLEUM
530	01:54:42:04	01:54:44:04 IS JUST ONE OF THE CONSIDERATIONS
531	01:54:44:06	01:54:46:29 TAKEN INTO ACCOUNT BY GEOLOGISTS LOOKING FOR OIL.
532	01:54:48:05	01:54:49:27 WE HAVE TO ASSESS THE BASIN
533	01:54:49:29	01:54:51:11 FOR ITS SOURCE-ROCK POTENTIAL.
534	01:54:51:13	01:54:54:10 ONCE WE ASSESS THAT THERE ARE
505	04.54.54.40	SOURCE ROCKS
535 536	01:54:54:12 01:54:55:27	
550	01.54.55.27	BEEN APPROPRIATE?
537	01:54:59:01	01:55:02:00 HAS THAT SOURCE ROCK
557	01.04.00.01	SET DOWN THERE LONG ENOUGH
538	01:55:02:02	01:55:03:14 AND BECOME BURIED DEEP ENOUGH
539	01:55:03:16	01:55:05:19 THAT THE TEMPERATURE HAS ALLOWED HYDROCARBONS
540	01:55:05:21	
541	01:55:06:29	01:55:09:25 WE HAVE TO LOOK
•	0000020	AT SOURCE, MIGRATION,
542	01:55:09:27	01:55:12:09 AND THE MIGRATION
		HAS TO BE TIMELY.
543	01:55:12:11	01:55:14:25 WE HAVE TO LOOK AT AN APPROPRIATE TRAP,
544	01:55:14:27	01:55:17:20 AND WE HAVE TO LOOK
		FOR RESERVOIR QUALITY.
545	01:55:21:24	01:55:23:08 AUTHOR JOHN McPHEE
546	01:55:23:10	01:55:25:24 ONCE TRIED TO REDUCE
		THE STUDY OF GEOLOGY
547		
548	01:55:27:10	
549	01:55:28:24	01:55:31:23 "THE SUMMIT OF MT. EVEREST IS MARINE LIMESTONE."
550	01:55:31:25	01:55:33:07 THIS STATEMENT SUMMARIZES
551	01:55:33:09	01:55:36:22 CENTURIES OF HUMAN FASCINATION ABOUT GEOLOGIC STRUCTURES,
552	01:55:36:24	01:55:38:09 INCLUDING MOUNTAIN RANGES,
553	01:55:38:11	01:55:41:24 FOLDED AND CONTORTED ROCKS, AND GREAT FAULTS.
554	01:55:41:26	01:55:44:07 THESE STRUCTURES ARE BOTH THE PRODUCT
555	01:55:44:09	
556	01:55:45:25	01:55:48:24 AND A RECORD OF EARTH'S
		DYNAMIC HISTORY.
557	01:55:48:26	01:55:50:26 AN UNDERSTANDING

		OF CEOLOGIC STRUCTURES
EEO	04.55.50.00	OF GEOLOGIC STRUCTURES 01:55:53:25 IS NOT ONLY ESSENTIAL
558	01:55:50:28	TO INTERPRETING EARTH'S PAST,
559	01:55:53:27	01:55:57:08 IT'S OFTEN THE SOLUTION
559	01.55.55.27	TO PRACTICAL PROBLEMS AS WELL.
560	01:55:57:10	
561	01:55:58:21	·
301	01.55.50.21	OF ANCIENT EARTHQUAKES,
562	01:56:01:16	01:56:03:13 AND THE STUDY
302	01.50.01.10	OF THESE STRUCTURES
563	01:56:03:15	01:56:05:23 IS FUNDAMENTAL TO EARTHQUAKE
000	01.00.00.10	HAZARD ANALYSIS
564	01:56:05:25	
565	01:56:07:10	01:56:10:09 THE TECTONIC ACTIVITY
	01.00.01.10	THAT CREATES MOUNTAIN RANGES
566	01:56:10:11	
		FOR OIL AND GAS FIELDS,
567	01:56:13:11	·
		OF GEOLOGIC STRUCTURES
568	01:56:15:25	
		FOR THESE FUELS.
569	01:56:18:25	01:56:21:07 IN ADDITION,
		STRUCTURAL GEOLOGY IS VITAL
570	01:56:21:09	01:56:22:21 TO LANDSLIDE ANALYSIS, 01:56:24:20 AND IN PLANNING
571	01:56:22:23	01:56:24:20 AND IN PLANNING
		DISPOSAL SITES
572	01:56:24:22	01:56:27:11 FOR THE WASTE PRODUCTS
		OF HUMAN CIVILIZATION,
573	01:56:27:13	
		TO HOUSEHOLD GARBAGE.
574	01:56:30:08	01:56:32:06 THE STUDY
		OF GEOLOGIC STRUCTURES
575	01:56:32:08	01:56:35:05 IS ONE IMPORTANT WAY
		THAT THE SCIENCE OF GEOLOGY
576	01:56:35:07	
577	01:56:36:23	01:56:39:21 TO THE PRACTICAL CONCERNS
		OF PEOPLE AND CIVILIZATIONS.
578	01:56:39:23	01:56:43:05 THE STRUCTURE OF THE EARTH
		BENEATH OUR FEET IS VITAL
579	01:56:43:07	01:56:45:07 BOTH TO INTERPRETING
500	04 50 45 00	EARTH'S PAST
580	01:56:45:09	01:56:47:28 AND TO PLANNING
504	04-50-40-00	OUR OWN FUTURE.
581	01:56:48:00	01:56:50:27 CAPTIONING PERFORMED BY
		THE NATIONAL CAPTIONING
500	04 50 50 00	INSTITUTE, INC.
582	01:56:50:29	01:56:53:26 CAPTIONS COPYRIGHT 1991
		THE CORPORATION FOR COMMUNITY
500	04.57.54.00	COLLEGE TELEVISION
583	01:57:54:02	01:57:57:14 Annenberg Media
584	01:57:57:16	01:58:02:20 §
585	01:58:02:22	01:58:04:06 For information
506	01.50.04.00	about this
586	01:58:04:08	01:58:06:23 and other Annenberg
587	01:58:06:25	Media programs 01:58:09:10 call 1-800-LEARNER
J01	01.00.00.20	01.30.03.10 Call 1-000-LLANNEN

and visit us at

588 01:58:09:12 01:58:13:26 www.learner.org.