1	01:00:04:16	01:00:07:28 Annenberg Media
2	01:00:08:00	01:01:00:10 §
3	01:01:00:12	01:01:02:23 THE MAJESTIC SIDE
		OF A MOUNTAIN RANGE
4	01:01:02:25	01:01:05:08 IS AN ENDLESS SOURCE
		OF WONDER AND BEAUTY.
5	01:01:05:10	01:01:06:23 TO MOST PEOPLE,
6	01:01:06:25	01:01:08:28 MOUNTAINS ARE SYNONYMOUS
-		WITH GREAT SIZE
7	01.01.09.00	01.01.10.04 AND PERMANENCE
8	01.01.10.06	01:01:11:20 BUT ARE MOUNTAINS
U U	01101110100	REALLY PERMANENT?
q	01.01.11.22	
10	01:01:13:05	01:01:15:14 NEARLY EVERY
10	01.01.10.00	
11	01.01.15.16	
10	01.01.15.10	
12	01.01.17.01	
10	01.01.10.05	
13	01:01:19:05	
	04 04 00 04	
14	01:01:20:21	01:01:22:28 REMOVE THE MOUNTAINS
		FROM THE LANDSCAPE
15	01:01:23:00	01:01:26:02 UNLESS SOMEHOW THEY WERE
		BEING MAIN I AINED BY UPLIFT.
16	01:01:26:04	01:01:28:09 MOUNTAINS ARE BUILT
		BY TECTONIC PROCESSES
17	01:01:28:11	01:01:31:14 THAT CAUSE PORTIONS OF
		THE EARTH'S CRUST TO RISE.
18	01:01:31:16	01:01:34:14 THESE PROCESSES ARE FUELED
		BY THE ESCAPE OF HEAT
19	01:01:34:16	01:01:36:23 FROM THE INTERIOR
		OF THE EARTH
20	01:01:36:25	01:01:39:04 CAUSING CRUSTAL UPLIFT
		BY VOLCANIC ACTIVITY
21	01:01:39:06	01:01:41:24 AND BY MOVEMENT ALONG FAULTS
		THAT, IN TURN,
22	01:01:41:26	01:01:44:03 IS RESPONSIBLE
		FOR FORMATION OF MOUNTAINS.
23	01:01:44:05	01:01:45:24 MOUNTAIN-BUILDING
-		PROCESSES LIKE THESE
24	01:01:45:26	01:01:48:24 ARE CONCENTRATED
	0.110.110.20	AT THE BOUNDARIES
		BETWEEN TECTONIC PLATES
25	01.01.48.26	
26	01:01:50:10	
20	01.01.00.10	ARE MOVING APART
27	01.01.52.25	
20	01:01:52:25	
20	01.01.34.10	
20	01.01.57.04	INDIVIDUAL MOUNTAIN BELTS,
29	01.01.57.04	
00	04 04 50 00	
30	01:01:58:29	UT:UZ:UT:21 THE TECTONIC HISTORY
0 4	04 00 04 00	
31	01:02:01:23	01:02:04:01 WITH THE DEVELOPMENT
~~		
32	01:02:04:03	01:02:05:16 OF PLATE TECTONICS,

33	01:02:05:18	01:02:07:12 G	GEOLOGISTS FINALLY
24	01.02.07.14		
34	01.02.07.14		OR WHAT CAUSES
25	01.00.11.00		
35	01:02:11:08		VADDITION,
30	01:02:12:19	01:02:14:17 1	HE GEUGRAPHICAL
~ 7		DISTRIBUTION	OF MOUNTAINS
37	01:02:14:19	01:02:16:11 A	LSO BEGAN
		TO MAKE SENS	
38	01:02:17:29	01:02:20:12 N	NOST OF THE WORLD'S
		GREAT RANGE	S
39	01:02:20:14	01:02:23:07 L	IE NOT AT
		THE CENTER O	F CONTINENTS,
40	01:02:23:09	01:02:25:16 E	BUT, INSTEAD,
		CLOSE TO THE	IR MARGINS.
41	01:02:25:18	01:02:27:26 <i>II</i>	N GENERAL,
		THE CENTERS	OF CONTINENTS
42	01:02:27:28	01:02:32:06 C	CONSIST OF STABLE REGIONS
		OF VERY OLD C	CRUST.
43	01:02:32:08	01:02:33:21 7	HESE REGIONS,
44	01:02:33:23	01:02:35:26 C	CALLED CRATONS
		OR SHIELDS.	
45	01:02:35:28	01:02:38:26 A	RE DEEPLY ERODED.
		MOSTLY LOW L	YING.
46	01.02.38.28	01·02·40·01 A	ND LEVEL
47	01.02.42.00	01.02.44.07	NE OF THE WORLD'S
	01102112.00	LARGEST CRAT	
48	01.05.44.09	01.02.45.21	IES IN THE MIDDLE
49	01:02:45:23	01:02:47:17)E THE NORTH AMERICAN
-0	01.02.40.20		
50	01.02.47.10	0.001111021010	GREAT ROLLING FLATLAND
50	01.02.47.19	01.02.49.10 A	TO THE NORTH
57	01:02:49:10	01:02:51:02 7	
52	01.02.31.04		
F2	01.02.52.12	01:02:55:22	
55	01.02.55.15		
F 4	04.00.55.04		
54	01:02:55:24	01:02:57:06 B	THE IS
55	01:02:58:23		
50	04 00 00 00		SHIELD,
56	01:03:00:29	01:03:03:25 A	ND WITHIN IT
	04 00 00 07	IS A VAST REGI	
57	01:03:03:27	01:03:06:04 /	HE SUPERIOR PROVINCE,
58	01:03:06:06	01:03:09:19 C	IVER 1,500 KILOMETERS
		ACROSS.	
59	01:03:09:21	01:03:13:05 F	IERE, THE ROCK RANGES
		FROM 2.6 BILLI	ON
60	01:03:13:07	01:03:15:10 7	O 4 BILLION YEARS OLD
61	01:03:15:12	01:03:18:14 7	THE ANCIENT HEART
		OF NORTH AME	ERICA.
62	01:03:18:16	01:03:21:04 C	CRATONS THIS ANCIENT
		ARE SIGNIFICA	NT,
63	01:03:21:06	01:03:25:07 F	FOR THEY HOLD CLUES
		TO THE BIRTH (OF CONTINENTS.
64	01:03:25:09	01:03:27:24 7	THE TYPICAL ROCKS
		OF THE SUPER	IOR PROVINCE
65	01:03:27:26	01:03:29:21 A	RE GRANULITE

		AND GREENSTONE.
66	01:03:32:01	01:03:34:29 GRANULITE IS A HIGH-GRADE
		METAMORPHIC ROCK
67	01:03:35:01	01:03:38:00 AND MAKES UP
		MOST OF THE LANDSCAPE.
68	01:03:38:02	01:03:40:00 IT IS TOO SEVERELY
		METAMORPHOSED
69	01:03:40:02	01:03:42:19 TO PROVIDE MUCH INFORMATION
		ABOUT THE PAST,
70	01:03:42:21	01:03:45:17 THOUGH ITS EXPOSURE
	<u></u>	
/1	01:03:45:19	01:03:48:17 INDICATES THAT THE CRUST
70	04-00-40-40	
12	01:03:48:19	
70	01.00.004	
73	01:03:50:04	01:03:51:17 ARE INTRICATE BELTS
74	01.03.51.19	
75	01.00.50.10	
70 76	01.03.53.13	01.03.55.14 CALLED GREENSTONES.
10	01.03.55.10	
77	01.03.28.02	01.04.01.02 AS THE REMNANTS OF NUMEROUS
.,	01.00.00.02	SMALL ISLAND ARCS
78	01.04.01.04	01.04.04.04 WHICH HAVE BEEN
10	01.04.01.04	CLOSELY PACKED TOGETHER
79	01.04.04.06	$01.04.07.01 \qquad \text{INITIALLY}$
10	01.04.04.00	IN THE FARLY FARTH
80	01:04:07:03	01:04:09:01 THE CRUST OF THE EARTH
81	01:04:09:03	01:04:11:16 MUST HAVE BEEN
		PRINCIPALLY
		OCEANIC CRUSTS
82	01:04:11:18	01:04:15:02 SURMOUNTED BY
		A THIN VENEER OF WATER
83	01:04:15:04	01:04:17:28 AND A VERY DENSE
		ATMOSPHERE.
84	01:04:18:00	01:04:21:03 GRADUALLY, DUE TO
		CONVERGENT PLATE MOTION
85	01:04:21:05	01:04:24:03 THEY WERE PROBABLY
		PRETTY SMALL
		AND THIN PLATELETS
86	01:04:24:05	01:04:26:02 BACK IN EARLY TIMES.
87	01:04:26:04	01:04:29:08 WE'RE TALKING
~~		3, 4 BILLION YEARS AGO.
88	01:04:29:10	01:04:32:02 SMALL ISLAND ARCS
00	04-04-00-04	
89	01:04:32:04	
00	01.04.24.40	
90	01.04.34.19	
01	01.01.20.05	
31	01.04.30.00	
92	01.04.40.10	
92	01.04.40.10	
94	01.04.43.25	
U 7	51.07.70.20	SEA-FLOOR SPREADING PROCESS
95	01:04:47.16	

96	01:04:50:01	A LOT OF SMALL 01:04:54:03 RAPIDLY-OVERTURNING
00	01.01.00.01	CONVECTIVE CELLS
		IN THE UPPER MANTLE.
97	01:04:54:05	01:04:58:02 SO, VERY RAPID GROWTH
		ACCOMPANIED EARLY
		THE EARLY EARTH
98	01:04:58:04	01:05:01:01 AND AS THESE
		ACCRETED TOGETHER,
99	01:05:01:03	01:05:02:15 THEY FORMED ENLARGING,
100	01:05:02:17	01:05:05:06 EVENTUALLY
		SUPERCONTINENTAL ASSEMBLIES.
101	01:05:05:08	01:05:07:26 THOSE ASSEMBLIES
400	04 0 5 07 00	WERE ANNEALED OVER TIME,
102	01:05:07:28	01:05:11:11 AND GRADUALLY THEY FORMED
400	04-05-44-40	RELATIVELY LARGER PLATES
103	01:05:11:13	01:05:13:19 CAPPED BY CONTINENTAL CRUST.
104	01:05:13:21	01:05:15:05 THE CONTINENTAL CRUST ITSELF
105	01:05:15:07	
100	04.05.40.00	
106	01:05:19:02	
107	01.05.00.00	
107	01.05.22.02	UI.05.23.15 CONTINENTAL CRUST,
100	01.05.00.17	
106	01.05.23.17	
100	01.05.25.17	
109	01.05.25.17	01.05.21.20 AND NOT GREENSTONE LAVAS, 01.05.20.05 SO A MECHANISM
110	01.05.27.20	
111	01.05.30.07	
111	01.03.30.07	
		OF THE CRUST
112	01.05.33.18	01-01-25-25-25 SOME GEOLOGISTS SPECILLATE
112	01:05:35:17	01:05:38:15 THAT THE GREENSTONE LAVAS
110	01.00.00.17	WEATHERED TO FORM SEDIMENTS
114	01.02.38.12	01:05:41:18 RICH IN POTASSILIM
114	01.00.00.17	
115	01.02.43.18	01:05:46:01 THESE SEDIMENTS COULD
	01100110110	HAVE BEEN INCORPORATED
116	01:05:46:03	01:05:48:25 BY MAGMAS
	01100110100	ERUPTING AT A LATER DATE.
117	01:05:48:27	01:05:50:10 ALTERING THE MOLTEN ROCK
118	01:05:50:12	01:05:52:10 TO A MORE GRANITIC
		COMPOSITION.
119	01:05:54:17	01:05:55:26 OR PERHAPS
120	01:05:55:28	01:05:58:00 REPEATED PARTIAL MELTING
-		OF THE LITHOSPHERE
121	01:05:58:02	01:05:59:16 UNDERNEATH
		THE GREENSTONE ISLANDS
122	01:05:59:18	01:06:01:13 PRODUCED
		A MORE GRANITIC CRUST.
123	01:06:03:17	01:06:05:00 WHATEVER THE REASON.
124	01:06:05:02	01:06:07:08 THE WORLD OF
		GREENSTONE-BELT VOLCANISM
125	01:06:07:10	01:06:09:14 DID NOT LAST.
126	01:06:09:16	01:06:11:28 AT ABOUT TWO

		BILLION YEARS AGO,
127	01:06:12:00	01:06:13:28 THE GENERAL
		TECTONIC PATTERN
128	01:06:14:00	01:06:15:11 APPEARS TO HAVE CHANGED.
129	01:06:15:13	01:06:17:25 WHERE THERE WAS
	0.1000.0110	A HIGHER ORGANIZATION
130	01.06.17.27	
100	01.00.17.27	
121	01.06.20.11	
131	01.00.20.11	
400	04-00-04-05	
132	01:06:24:25	01:06:27:08 THAT CHANGE MAY
		HAVE BEEN RELATED
133	01:06:27:10	01:06:30:09 TO THE DEVELOPMENT
		OF A THICK LITHOSPHERE.
134	01:06:30:11	01:06:31:18 EARLY IN EARTH HISTORY,
135	01:06:31:20	01:06:33:28 THERE MAY
		HAVE BEEN A MUCH
		THINNER LITHOSPHERE
136	01:06:34:00	01:06:36:14 WHICH PROMOTED
		A MUCH MORE RANDOM
137	01:06:36:16	01:06:38:29 AND FASTER.
	000.000.00	SHORTER CYCLE PATTERN
		OF CONVECTION
138	01.06.30.01	01.06.40.14 TO CREATE ANCIENT
100	01.00.00.01	
120	01.06.40.16	$1.06 \cdot 42 \cdot 28 \qquad \text{WHICH WE CALL}$
139	01.00.40.10	
1 1 0	04.00.40.00	I TE GREENSIONE DELIS.
140	01:06:43:00	
		AS THE EARTH COOLED
141	01:06:45:15	01:06:46:28 AND THE LITHOSPHERE
		THICKENED,
142	01:06:47:00	01:06:49:28 THEN WE BEGAN TO DRIVE
		AROUND THICKER PLATES.
143	01:06:50:00	01:06:52:14 THE CONTINENTS BEGAN
		TO EMBED THEMSELVES
144	01:06:52:16	01:06:54:23 INTO PLATES THAT
		HAD MANTLE ROOTS.
145	01:06:54:25	01:06:58:28 THEY BEGAN TO DEVELOP
		THEIR OWN UNIQUE
		LITHOSPHERES AS WELL.
146	01:06:59:00	01:07:02:05 FOR ALMOST A BILLION YEARS.
	0.100.00000	THE SUPERIOR PROVINCE
147	01.02.02.07	$01.07.05.11 \qquad WAS ALMOST ALL THAT$
147	01.07.02.07	
1 1 0	01.07.05.12	
140	01.07.05.13	
4.40	04 07 07 00	
149	01:07:07:28	01:07:11:16 THE CHURCHILL
		HUDSONIAN PROVINCE
		1.8 BILLION YEARS AGO.
150	01:07:11:18	01:07:14:16 THE CENTRAL PROVINCE
		1.6 BILLION YEARS AGO
151	01:07:14:18	01:07:18:22 AND THE GRENVILLE PROVINCE
		ABOUT ONE BILLION YEARS AGO.
152	01:07:19:28	01:07:21:11 IN THESE REGIONS,
153	01:07:21:13	01:07:23:26 GEOLOGISTS FIND ROCKS

		SIMILAR TO THOSE
154	01:07:23:28	01:07:25:29 MAKING UP MODERN
		MOUNTAIN RANGES.
155	01:07:27:15	01:07:30:12 AND IN THE VERY YOUNGEST
450	04-07-00-44	PARIS OF NORTH AMERICA,
156	01:07:30:14	
157	01.07.33.14	01:07:35:26 THESE OBSERVATIONS SUGGEST
107	01.07.00.14	THAT MOUNTAIN BUILDING.
158	01:07:35:28	01:07:38:11 A PROCESS GEOLOGISTS
		CALL OROGENY,
159	01:07:38:13	01:07:41:07 IS AN ESSENTIAL PART
		OF CONTINENTAL GROWTH.
160	01:07:42:24	01:07:44:00 GENERALLY SPEAKING,
161	01:07:44:02	01:07:46:27 THE FURTHER ONE TRAVELS
160	01.07.46.20	FRUM THE URATUN,
102	01.07.40.29	A CONTINENT RECOMES
163	01.07.48.20	A CONTINENT BECOMES, 01:07:51:26 AND THE YOUNGEST MOST
100	01.07.40.25	RUGGED PARTS OF A CONTINENT
164	01:07:51:28	01:07:54:26 LIE AT THE EDGE
	0	OF THE OCEAN.
165	01:07:56:13	01:07:59:12 IN FACT, THE ESSENTIAL KEY
		TO MOUNTAIN BUILDING
166	01:07:59:14	01:08:01:09 LIES IN UNDERSTANDING
		THIS LINK
167	01:08:01:11	01:08:03:25 BETWEEN OCEAN BASINS AND CONTINENTS.
168	01:08:06:21	01:08:08:19 IN THE 18th CENTURY,
169	01:08:08:21	01:08:10:10 SCOTTISH GEOLOGIST
470	04 00 40 40	
170	01:08:10:12	01:08:12:24 RECUGNIZED THAT MUCH
171	01.08.12.26	01-08-14-24 THAT COMPOSED
17.1	01.00.12.20	HIS NATIVE LAND
172	01:08:14:26	01:08:16:09 ORIGINATED BENEATH THE SEA
173	01:08:16:11	01:08:20:10 AS SEDIMENT ACCUMULATING
		QUIETLY ON THE OCEAN FLOOR.
174	01:08:22:01	01:08:24:10 ROCKS TODAY EXPOSED
		IN THE EARTH'S MOUNTAINS
175	01:08:24:12	01:08:26:20 TELL HOW THOSE MOUNTAINS CAME TO BE.
176	01:08:26:22	01:08:27:27 JAMES HUTTON, I THINK,
177	01:08:27:29	01:08:30:24 WAS THE FIRST TO
470	04 00 00 00	
178	01:08:30:26	
170	01.09.24.11	
175	01.00.34.11	WHEREVER HE WENT
180	01.08.36.27	01:08:38:10 INTO
	000.00.2.	THE EARTH'S MOUNTAINS.
181	01:08:38:12	01:08:39:25 HE FOUND
		SEDIMENTARY ROCKS.
182	01:08:39:27	01:08:41:10 SEDIMENTARY ROCKS
		THAT FORMED
183	01:08:41:12	01:08:45:09 ALWAYS FORMED

		ON THE BOTT	ГОМ
		OF THE OCE	AN FLOOR.
184	01:08:45:11	01:08:48:09	HE REALIZED THAT THERE
		HAD TO BE A	CONNECTION
185	01:08:48:11	01:08:51:09	BETWEEN MARINE
		DEEP-SEA SE	DIMENTATION
		AND MOUNTA	AIN BUILDING.
186	01:08:51:11	01:08:54:29	WHAT WAS ONCE
		ON THE BOTT	ГОМ
		OF THE OCE	AN FLOOR
187	01:08:55:01	01:08:59:08	WASLATER
		DESTINED TO	BECOME AT
		THE TOPS OF	MOUNTAINS
188	01:09:00:10	01:09:01:23	HUTTON HAD NO EXPLANATION
189	01.09.01.25	01.09.04.22	FOR HOW MARINE SEDIMENT
100	01100101120	COULD BE U	PLIETED
190	01.09.04.24	01.09.06.22	AND ADDED TO DRY I AND
191	01:09:06:24	01.09.09.22	HE SIMPLY OBSERVED
101	01.00.00.21		
102	01.00.00.24	01.00.14.23	HE ALSO RECOGNIZED THAT
102	01.00.00.24	AS THE ROC	K OF MOUNTAINS
103	01.00.14.25	01.00.17.23	IT SLIPPLIES NEW SEDIMENT
155	01.00.14.20	TO THE SEA	FLOOR
10/	01.00.12.25	01.00.21.22	WHICH IN TURN CAN BE
134	01.00.17.20	CONVERTED	TO ROCK
195	01.00.21.24	01.00.23.07	FORMING NEW MOUNTAINS
196	01:00:21:24	01:00:26:22	THE FACT THAT A GREAT DEAL
150	01.00.20.00	OF MATERIA	
197	01.00.26.24	01.00.28.23	IS RECYCLED OVER AND OVER
198	01:09:28:25	01:09:31:23	WAS ONE OF HUTTON'S
100	01.00.20.20	MOST BRILL	
199	01.00.31.25	01.00.35.07	IT SHOWED THAT THE LAND
100	01.00.01.20	GROWS FRC	M THE SEA
200	01.00.36.24	01.00.38.22	THE THEORY
200	01.00.00.24	01.00.00.22 OF PLATE TE	ECTONICS
201	01.00.38.24	01.09.41.22	DEVELOPED NEARLY TWO CENTURIES
201	01.00.00.24		
202	01.00.41.24	01.00.42.08	EXPLAINS HOW
202	01.00.41.24	THE OCEAN	EL OOR RISES
			MOLINITAINS
203	01.00.47.10	01.00.50.08	BECAUSE OF DIFFERENCES
203	01.09.47.10		AND MAKE-LIP
204	01.00.20.10	01.00.52.07	
204	01.03.30.10	AND OCEAN	IC LITHOSPHERE
205	01.00.22.00	01.00.55.22	THE EDGE OF A CONTINENT
205	01.09.02.09		
206	01.00.55.24	01.00.58.22	
200	01.00.00.24		IDARY TO FORM
207	01.00.28.24	01.10.00.23	IE ENOLICH PRESSURE
201	01.03.00.24		
208	01.10.00.25	0.0711 LLD, 0.01.10.02.10	
200	01.10.00.20	01.10.02.10	HEAVIER THAN
203	01.10.04.10	CONTINENT	
210	01.10.06.10	01.10.00.07	THE OCEANIC LITHOSPHERE
-10	51.10.00.10	51.10.05.07	

		BEGINS SINKING,
211	01:10:09:09	01:10:11:22 OR SUBDUCTING, BENEATH
		THE ADJACENT CONTINENT
212	01:10:11:24	01:10:14:22 AS THE NEW PLATES
		ARE PUSHED TOGETHER.
213	01:10:17:10	01:10:22:08 AN OROGENY BEGINS
		AS VOLCANOES FORM
		AN ISLAND ARC OR BELT
214	01:10:22:10	01:10:24:28 ALONG
01E	01.10.25.00	THE CONTINENTAL MARGIN.
215	01:10:25:00	
216	01.10.28.00	01:10:31:25 IS CALIGHT IN THE SOLIEEZE
210	01.10.20.00	CRUMPI ED UP AND UPI IETED
217	01:10:33:10	01:10:36:23 ULTIMATELY SO MUCH PRESSURE
		AND HEAT MAY ACCUMULATE
218	01:10:36:25	01:10:38:08 THAT THE SOFT SEDIMENT
219	01:10:38:10	01:10:41:07 RECRYSTALLIZES INTO
		DURABLE METAMORPHIC ROCK,
220	01:10:41:09	01:10:44:05 THE VERY ROCK
		THAT MAKES UP VAST AREAS
221	01:10:44:07	01:10:45:20 OF OLDER CONTINENTAL CRUST.
222	01:10:47:13	01:10:48:27 AT HIGH ENOUGH
		IEMPERATURES,
223	01:10:48:29	U1:10:50:26 THE SEDIMENT
224	01.10.50.20	WILL EVEN MELT, 01:10:50:22 EVENTUALLY EODMINIC
224	01.10.30.20	IGNEOUS ROCKS
225	01.10.52.25	01.10.54.15 SUCH AS GRANITE
226	01:10:52:20	01:10:57:00 IN THE CORES
0	01110101111	OF MOUNTAIN RANGES.
227	01:10:57:02	01:10:59:28 WE CAN SEE IN
		THE METAMORPHIC ROCKS
228	01:11:00:02	01:11:02:13 THAT SEDIMENTS ARE
		FOLDED AND METAMORPHOSED
229	01:11:02:15	01:11:04:13 AND ACTUALLY INVOLVED
		AND MELTED
230	01:11:04:15	01:11:06:28 INTO TYPICALLY GRANITIC
	~ ~ ~ ~ ~	TYPES OF MATERIALS.
231	01:11:07:00	01:11:10:14 WE ALSO LOOK
222	01.11.10.16	
232	01.11.10.10	OF MAGMA
233	01.11.12.16	
200	01.11.12.10	OUT OF THE MANTLE
234	01:11:15:07	01:11:17:20 WHICH WILL BE MORE
201	0111110101	BASALTIC COMPOSITION
235	01:11:17:22	01:11:19:05 AND, IN MANY INSTANCES,
236	01:11:19:07	01:11:22:05 PROMOTED THE MELTING
		OF THE CRUSTAL ROCKS.
237	01:11:22:07	01:11:25:06 WE ALSO SEE EVIDENCE OF
		OLDER CONTINENTAL CRUST
238	01:11:25:08	01:11:27:21 HAVING BEEN HEATED UP
		AND MELTED
239	01:11:27:23	01:11:30:28 AND REJUVENATED

		INTO YOUNGER
		NEW CONTINENTAL CRUST.
240	01:11:31:00	01:11:34:16 THESE HARDENED ROCK TYPES
		SLOWLY WEAR AWAY,
241	01:11:34:18	01:11:37:17 CONTRIBUTING NEW SEDIMENT TO THE SEA.
242	01:11:37:19	01:11:40:18 MUCH OF THE ROCK DOES NOT
	• • • • • • • • • •	WEAR AWAY, HOWEVER.
243	01:11:40:20	01:11:43:00 INSTEAD
	0	IT REMAINS ATTACHED.
244	01:11:43:02	01:11:46:00 ADDING NEW MASS
	• • • • • • • • • • • • •	TO THE CONTINENT.
245	01:11:46:02	01:11:47:26 NEW MATERIAL IS ALSO ADDED
246	01:11:47:28	01:11:51:20 AS MAGMA FROM
		THE UNDERLYING MANTLE
		AND SUBDUCTING OCEAN FLOOR
247	01:11:51:22	01:11:54:20 RISE UP INTO THE CRUST
		TO COOL AND HARDEN
248	01:11:54:22	01:11:57:16 OR TO ERUPT
		AS LAVA AND ASH.
249	01:11:59:08	01:12:01:19 THE CONTINUOUS
		TRANSFORMATION OF MATERIAL
250	01:12:01:21	01:12:03:19 FROM SEDIMENTARY
		TO METAMORPHIC
251	01:12:03:21	01:12:05:19 TO IGNEOUS AND BACK AGAIN
252	01:12:05:21	01:12:08:03 IS CALLED THE ROCK CYCLE.
253	01:12:08:05	01:12:09:28 THROUGHOUT A GROWING
		MOUNTAIN RANGE,
254	01:12:10:00	01:12:12:18 THE COMPLETE ROCK CYCLE
		MAY BE ACTIVE,
255	01:12:12:20	01:12:14:18 CREATING NEW
		CONTINENTAL CRUST.
256	01:12:16:04	01:12:18:13 OCEANIC CRUST
		REPRESENTS MATERIAL
257	01:12:18:15	01:12:22:13 WHICH HAS COME
		TO THE EARTH'S SURFACE
		DIRECTLY BY MAGMATISM
258	01:12:22:15	01:12:24:13 OUT OF THE EARTH'S MANTLE.
259	01:12:24:15	01:12:27:03 IT'S THE MOST
		COMMON TYPE OF MAGMA
260	01:12:27:05	01:12:29:14 COMING OUT OF
		THE EARTH'S MANTLE.
261	01:12:29:16	01:12:32:03 IT COMES OUT AS
		A COMPOSITION OF BASALT,
262	01:12:32:05	01:12:35:06 WHICH IS A SILICA-
		MAGNESIUM-RICH ROCK.
263	01:12:35:08	01:12:37:04 THE CONTINENTS
		REPRESENT MATERIAL
264	01:12:37:06	01:12:40:03 THAT HAS BEEN RECYCLED
		NUMEROUS TIMES
265	01:12:40:05	01:12:41:28 BY IGNEOUS ACTIVITY,
		METAMORPHISM,
266	01:12:42:00	01:12:45:18 SEDIMENTATION, DEFORMATION,
		MOUNTAIN BUILDING,
267	01:12:45:20	01:12:49:09 DEPOSITION INTO BASINS,
		AND RECYCLED AND RECYCLED.

268	01:12:49:11	01:12:52:19 IT BASICALLY CAME FROM
		PROTO-OCEANIC CRUST,
269	01:12:52:21	01:12:55:09 BUT IT HAS UNDERGONE
		MANY DIFFERENT CHANGES
270	01:12:55:11	01:12:57:03 THROUGH THESE PROCESSES
		THROUGH TIME
271	01.15.57.05	01.13.00.03 TO MAKE IT DISTINCT
211	01.12.07.00	
		MUCHLIGHTER
272	01.13.00.05	
212	01.15.00.05	
070	04.42.02.20	
213	01.13.02.20	
074	04.40.04.47	
274	01:13:04:17	
		INCREASE IN SIZE OVER TIME.
275	01:13:07:23	01:13:10:12 WE KNOW FROM RADIOMETRIC
		DATING OF ROCKS
276	01:13:10:14	01:13:12:26 THAT THE CENTRAL PORTION
		OF THE NORTH AMERICAN
		CONTINENT
277	01:13:12:28	01:13:14:26 IS COMPOSED
		OF VERY OLD ROCKS,
278	01:13:14:28	01:13:17:16 ALL OF WHICH FORMED
		OVER A BILLION YEARS AGO.
279	01:13:17:18	01:13:19:16 THE APPALACHIAN MOUNTAINS
		WERE THEN BUILT
280	01:13:19:18	01:13:21:27 ONTO THE EASTERN MARGIN
		OF THE CRATON
281	01:13:21:29	01:13:23:12 IN A SERIES OF COLLISIONS
282	01:13:23:14	01:13:25:27 ENDING ABOUT
		250 MILLION YEARS AGO.
283	01.13.25.29	01.13.27.26 THE SIERRA NEVADA MOUNTAINS
_00	0	WERE ADDED
284	01.13.27.28	01.13.30.02 TO THE CONTINENT'S
201	01110.27.20	WESTERN MARGIN
285	01.13.30.04	01:13:33:01 IN A PROCESS ENDING
200	01.10.00.04	ABOUT 80 MILLION YEARS AGO
286	01-13-33-03	01:13:37:05 FOLLOWED BY FORMATION
200	01.15.55.05	OF THE CASCADE RANGE
207	01-12-27-07	
207	01.15.57.07	
200	01-12-20-10	
200	01.13.39.10	
000	04-40-40-04	
289	01:13:43:04	U1:13:45:11 WITH THE OLDEST ROCKS
290	01:13:45:13	01:13:47:22 SURROUNDED BY YOUNGER
		AND YOUNGER MOUNTAIN BELTS.
291	01:13:47:24	01:13:49:07 SUBDUCTION OF SEA FLOOR
292	01:13:49:09	01:13:52:07 IS THE MOST COMMON REASON
		MOUNTAINS FORM,
293	01:13:52:09	01:13:55:06 BUT IT IS NOT
		THE ONLY WAY.
294	01:13:55:08	01:13:57:17 ANOTHER METHOD
		IS ACCRETION

295	01:13:57:19	01:14:00:25 THE JOINING TOGETHER OF SEPARATE LAND MASSES.
296	01:14:02:26	01:14:05:09 WHEN TWO MASSES
		OF CONTINENTAL LITHOSPHERE,
297	01:14:05:11	01:14:07:15 SUCH AS INDIA AND ASIA,
298	01:14:07:17	01:14:12:05 ARE BROUGHT TOGETHER BY
		THE COMPLETE SUBDUCTION OF
		AN INTERVENING OCEAN BASIN,
299	01:14:12:07	01:14:15:29 THE COLLISION
		RAISES HUGE MOUNTAINS.
300	01:14:16:01	01:14:19:15 SEA FLOOR AND
		SEDIMENTARY DEPOSITS
		CAUGHT IN THE SQUEEZE
301	01:14:19:17	01:14:23:15 ARE METAMORPHOSED
		AND CONVERTED IN PART
		TO IGNEOUS ROCK.
302	01:14:23:17	01:14:28:07 THIS PROCESS GLUES
		THE ONCE-SEPARATE
		LAND MASSES TOGETHER.
303	01:14:28:09	01:14:34:00 THE ACCRETION OF TWO SUCH
		LARGE BODIES OF LITHOSPHERE
		AS INDIA AND ASIA
304	01:14:34:02	01:14:36:19 IS NOT A COMMON
		GEOLOGICAL EVENT,
305	01:14:36:21	01:14:39:20 BUT THERE IS EVIDENCE THAT
		MUCH SMALLER BODIES OF LAND
306	01:14:39:22	01:14:43:20 ARE FREQUENTLY ADDED TO
		THE MARGINS OF CONTINENTS
		BY SUBDUCTION.
307	01:14:45:16	01:14:52:00 SMALL CONTINENTAL FRAGMENTS
		SUCH AS MADAGASCAR
308	01:14:52:02	01:14:53:19 AND THE FIJI ISLANDS
309	01:14:53:21	01:14:56:20 ARE SCATTERED THROUGHOUT
		THE WORLD'S OCEANS.
310	01:14:59:07	01:15:00:18 BECAUSE OF THEIR BUOYANCY.
311	01:15:00:20	01:15:03:12 SUCH FRAGMENTS CANNOT
-		BE SUBDUCTED.
312	01:15:03:14	01:15:07:08 THEY MERELY BECOME GLUED
		BY METAMORPHISM
		AND IGNEOUS ACTIVITY
313	01.12.02.10	
0.0		
211	01110.07.10	THEY COLLIDE WITH
.314	01:15:11:04	THEY COLLIDE WITH. 01:15:12:17 AS THIS HAPPENS
314	01:15:11:04	THEY COLLIDE WITH. 01:15:12:17 AS THIS HAPPENS, 01:15:14:13 THE POSITION
314	01:15:11:04 01:15:12:19	THEY COLLIDE WITH. 01:15:12:17 AS THIS HAPPENS, 01:15:14:13 THE POSITION OF THE SUBDUCTION ZONE
315 316	01:15:11:04 01:15:12:19 01:15:14:15	THEY COLLIDE WITH. 01:15:12:17 AS THIS HAPPENS, 01:15:14:13 THE POSITION OF THE SUBDUCTION ZONE 01:15:17:27 JUMPS TO THE SEAWARD SIDE
315 316	01:15:11:04 01:15:12:19 01:15:14:15	THEY COLLIDE WITH. 01:15:12:17 AS THIS HAPPENS, 01:15:14:13 THE POSITION OF THE SUBDUCTION ZONE 01:15:17:27 JUMPS TO THE SEAWARD SIDE OF THE ADDED LANDMASS
315 316 317	01:15:11:04 01:15:12:19 01:15:14:15 01:15:20:05	THEY COLLIDE WITH. 01:15:12:17 AS THIS HAPPENS, 01:15:14:13 THE POSITION OF THE SUBDUCTION ZONE 01:15:17:27 JUMPS TO THE SEAWARD SIDE OF THE ADDED LANDMASS. 01:15:24:08 OCEANIC SEAMOUNTS
315 316 317	01:15:11:04 01:15:12:19 01:15:14:15 01:15:20:05	TO THE CONTINENTSTHEY COLLIDE WITH.01:15:12:17AS THIS HAPPENS,01:15:12:17AS THE POSITIONOF THE SUBDUCTION ZONEOF THE SUBDUCTION ZONE01:15:17:27JUMPS TO THE SEAWARD SIDEOF THE ADDED LANDMASS.OT:15:24:0801:15:24:08OCEANIC SEAMOUNTSAND ISLANDS ALSO
315 316 317	01:15:11:04 01:15:12:19 01:15:14:15 01:15:20:05	THEY COLLIDE WITH. 01:15:12:17 AS THIS HAPPENS, 01:15:14:13 THE POSITION OF THE SUBDUCTION ZONE 01:15:17:27 JUMPS TO THE SEAWARD SIDE OF THE ADDED LANDMASS. 01:15:24:08 OCEANIC SEAMOUNTS AND ISLANDS ALSO MAX NOT BE SUBDUCTED
315 316 317 318	01:15:11:04 01:15:12:19 01:15:14:15 01:15:20:05	THE CONTINENTSTHEY COLLIDE WITH.01:15:12:17 AS THIS HAPPENS,01:15:12:17 AS THIS HAPPENS,01:15:14:13 THE POSITIONOF THE SUBDUCTION ZONE01:15:17:27 JUMPS TO THE SEAWARD SIDEOF THE ADDED LANDMASS.01:15:24:08 OCEANIC SEAMOUNTSAND ISLANDS ALSOMAY NOT BE SUBDUCTED,01:15:29:02BEING TOO THICK
314 315 316 317 318	01:15:11:04 01:15:12:19 01:15:14:15 01:15:20:05 01:15:24:10	THE CONTINENTSTHEY COLLIDE WITH.01:15:12:17 AS THIS HAPPENS,01:15:12:17 AS THIS HAPPENS,01:15:14:13 THE POSITIONOF THE SUBDUCTION ZONE01:15:17:27 JUMPS TO THE SEAWARD SIDEOF THE ADDED LANDMASS.01:15:24:08 OCEANIC SEAMOUNTSAND ISLANDS ALSOMAY NOT BE SUBDUCTED,01:15:29:02 BEING TOO THICKTO THE TRENCH
314 315 316 317 318	01:15:11:04 01:15:12:19 01:15:14:15 01:15:20:05 01:15:24:10	THEY COLLIDE WITH. 01:15:12:17 AS THIS HAPPENS, 01:15:14:13 THE POSITION OF THE SUBDUCTION ZONE 01:15:17:27 JUMPS TO THE SEAWARD SIDE OF THE ADDED LANDMASS. 01:15:24:08 OCEANIC SEAMOUNTS AND ISLANDS ALSO MAY NOT BE SUBDUCTED, 01:15:29:02 BEING TOO THICK TO PASS INTO THE TRENCH AT THE CONVERGENT BOUNDARY
 314 315 316 317 318 319 	01:15:11:04 01:15:12:19 01:15:14:15 01:15:20:05 01:15:24:10	THEY COLLIDE WITH. 01:15:12:17 AS THIS HAPPENS, 01:15:14:13 THE POSITION OF THE SUBDUCTION ZONE 01:15:17:27 JUMPS TO THE SEAWARD SIDE OF THE ADDED LANDMASS. 01:15:24:08 OCEANIC SEAMOUNTS AND ISLANDS ALSO MAY NOT BE SUBDUCTED, 01:15:29:02 BEING TOO THICK TO PASS INTO THE TRENCH AT THE CONVERGENT BOUNDARY. 01:15:33:12
314 315 316 317 318 318	01:15:11:04 01:15:12:19 01:15:14:15 01:15:20:05 01:15:24:10 01:15:31:00	THEY COLLIDE WITH. 01:15:12:17 AS THIS HAPPENS, 01:15:12:17 AS THIS HAPPENS, 01:15:14:13 THE POSITION OF THE SUBDUCTION ZONE 01:15:17:27 JUMPS TO THE SEAWARD SIDE OF THE ADDED LANDMASS. 01:15:24:08 OCEANIC SEAMOUNTS AND ISLANDS ALSO MAY NOT BE SUBDUCTED, 01:15:29:02 BEING TOO THICK TO PASS INTO THE TRENCH AT THE CONVERGENT BOUNDARY. 01:15:33:12 MUCH OF THE LANDSCAPE OF WESTERN NORTH AMERICA
 314 315 316 317 318 319 320 	01:15:11:04 01:15:12:19 01:15:14:15 01:15:20:05 01:15:24:10 01:15:31:00 01:15:33:14	THE CONTINENTSTHEY COLLIDE WITH.01:15:12:17 AS THIS HAPPENS,01:15:12:17 AS THIS HAPPENS,01:15:12:17 JUMPS TO THE SEAWARD SIDEOF THE SUBDUCTION ZONE01:15:17:27 JUMPS TO THE SEAWARD SIDEOF THE ADDED LANDMASS.01:15:24:08 OCEANIC SEAMOUNTSAND ISLANDS ALSOMAY NOT BE SUBDUCTED,01:15:29:02 BEING TOO THICKTO PASS INTO THE TRENCHAT THE CONVERGENT BOUNDARY.01:15:33:12 MUCH OF THE LANDSCAPEOF WESTERN NORTH AMERICA01:15:38:08 IS MADE UP

		OF CONTINENTAL FRAGMENTS,
		SEAMOUNTS, AND ISLAND ARCS.
321	01:15:38:10	01:15:41:02 THESE LANDMASSES HAVE
		ATTACHED TO THE CONTINENT
322	01:15:41:04	01:15:44:02 DURING THE SUBDUCTION
		OF PACIFIC OCEAN LITHOSPHERE
323	01:15:44:04	01:15:46:28 OVER THE PAST
		150 MILLION YEARS.
324	01:15:48:20	01:15:51:27 SUCH FRAGMENTS ARE COMMONLY
		DESCRIBED BY GEOLOGISTS
325	01:15:51:29	01:15:56:16 AS EXOTIC, SUSPECT,
		OR ACCRETED TERRAINS.
326	01:15:58:19	01:16:01:15 THE TERM TERRAIN
		REFERS TO AN AREA OF ROCKS
327	01:16:01:17	01:16:04:00 HAVING CONTINUOUS STRATA,
		OR STRUCTURE,
328	01:16:04:02	01:16:06:07 AND A DISTINCTIVE
		COMPOSITION.
329	01:16:07:20	01:16:09:25 THE BOUNDARY BETWEEN
		AN ACCRETED TERRAIN
330	01:16:09:27	01:16:12:01 AND THE MAIN BODY
		OF THE CONTINENT
331	01:16:12:03	01:16:14:15 MAY BE MARKED
		BY A FAULT ZONE
332	01:16:14:17	01:16:18:00 OR, IN PLACES,
		BY A BELT OF OCEANIC ROCK
333	01:16:18:02	01:16:21:11 WHICH WAS NOT SUBDUCTED
		BUT CAUGHT IN THE SQUEEZE
334	01:16:21:13	01:16:23:11 BETWEEN THE COLLIDING
		LANDMASSES.
335	01:16:25:12	01:16:28:20 TO DETERMINE THE ULTIMATE
		ORIGIN OF AN ACCRETED TERRAIN,
336	01:16:28:22	01:16:32:15 GEOLOGISTS LOOK
		FOR SPECIFIC CLUES
		IN THE FIELD.
337	01:16:32:17	01:16:36:26 THE KINDS OF CLUES
		THAT GEOLOGISTS CAN USE
		ARE FOSSILS.
338	01:16:36:28	01:16:40:11 FOSSILS IN A TERRAIN
		WHICH WOULD BE
		VERY DIFFERENT
339	01:16:40:13	01:16:43:02 FROM THE FOSSILS OF
		A NEIGHBORING TERRAIN
340	01:16:43:04	01:16:45:06 OR THE NEIGHBORING
		CONTINENT.
341	01:16:45:08	01:16:47:21 THE MAGNETISM OF ROCKS
		IN A TERRAIN
342	01:16:47:23	01:16:49:02 CAN ALSO BE DISTINCTIVE.
343	01:16:49:04	01:16:51:11 GEOLOGISTS COMPARE
		THE MAGNETIC DIRECTION
344	01:16:51:13	01:16:54:11 RECORDED BY ROCKS
		IN AN ACCRETED TERRAIN
345	01:16:54:13	01:16:57:10 TO THE MAGNETIC
		DIRECTION IN ROCKS
346	01:16:57:12	01:16:59:25 THAT FORMED ON
		THE CONTINENT ITSELF.

347	01:16:59:27	01:17:02:23	IF THESE DIRECTIONS
		OF MAGNETISM	MARE
		VERY DIFFERE	NT,
348	01:17:02:25	01:17:05:23	THAT'S A CLUE
		THE TERRAIN	
		TRAVELED FAF	2
349	01:17:05:25	01:17:07:15	TO GET WHERE IT IS.
350	01:17:07:17	01:17:09:11	GEOLOGISTS HAVE DISCOVERED
351	01:17:09:13	01:17:11:11	THAT NOT ALL
		ACCRETED TE	RRAINS
352	01:17:11:13	01:17:14:10	COME FROM PLATE DRIFT
		ACROSS OCEA	AN BASINS.
353	01:17:16:06	01:17:19:20	SOME TERRAINS ARE MERELY
		HUGE PIECES	OF A CONTINENT
354	01:17:19:22	01:17:22:20	WHICH ARE SLICED OFF
		AND SHIFTED	GREAT DISTANCES
355	01:17:22:22	01:17:25:14	BYMOVEMENT
		ALONG LARGE	E FAULTS.
356	01:17:28:01	01:17:29:19	GEOLOGISTS
		CAN'T ALWAYS	S DISTINGUISH
357	01:17:29:21	01:17:31:19	BETWEEN TERRAINS
		OF THIS ORIGI	IN
358	01:17:31:21	01:17:35:20	AND THOSE WHICH TRULY COME
		FROM ACROS	S AN ANCIENT SEA.
359	01:17:35:22	01:17:37:20	IN FACT,
		MANY MOUNT	AIN BELTS
360	01:17:37:22	01:17:40:20	SEEM TO CONTAIN
		TERRAINS OF	BOTH TYPES.
361	01:17:41:21	01:17:43:05	THE NOTION
		THAT SOME TE	RRAINS
362	01:17:43:07	01:17:44:17	ARE EXOTIC OR SUSPECT
363	01:17:44:19	01:17:46:17	IS CONTROVERSIAL
		BECAUSE IT'S I	UNCLEAR
364	01:17:46:19	01:17:50:01	AS TO HOW FAR SOME OF THESE
~~-		TERRAINS HAV	E TRAVELED.
365	01:17:50:03	01:17:52:23	UH, SOME MAY BE
		ONLY LOCALLY	(DERIVED.
366	01:17:52:25	01:17:54:08	I MEAN, LET'S SAY
367	01:17:54:10	01:17:56:23	PORTIONS OF BAJA CALIFORNIA
		WERE OFFSET	
368	01:17:56:25	01:17:59:24	
		TO THE EDGE (OF CALIFORNIA.
369	01:17:59:26	01:18:02:07	THAT WOULD NOT
		BE VERY FAR I	IRAVELED.
370	01:18:02:09	01:18:03:17	BUT LET'S SAY
371	01:18:03:19	01:18:06:01	PORTIONS OF CHINA TRAVELED
		ACROSS THE P	PACIFIC OCEAN
372	01:18:06:03	01:18:09:01	AND THEN WERE RAFTED
		INTO THE SIDE	OF OREGON.
373	01:18:09:03	01:18:10:16	THAT WOULD BE FAR TRAVELED.
374	01:18:10:18	01:18:14:06	II'S CLEAR FROM,
~ - -		UH, PALEOMAG	JNETIC EVIDENCE,
3/5	01:18:14:08	01:18:15:11	FOSSIL EVIDENCE,
376	01:18:15:13	01:18:16:26	THAT SOME BITS
~ 		OF MATERIAL	
377	01:18:16:28	01:18:18:11	SOME FROM THE OCEAN

		CROSSING	
378	01:18:18:13	01:18:20:22	SOME FROM OTHER PARTS
0.0	01110110110	OF CONTINEN	TS
379	01:18:20:24	01:18:22:07	HAVE BEEN BROUGHT
		GREAT DISTAI	NCE
380	01:18:22:09	01:18:23:16	SOME THOUSANDS
201	01.10.00.10		
301	01.10.23.10	OF CONTINEN	TS
382	01:18:25:29	01:18:28:06	WHEN WE LOOK AT MODERN-DAY
		MOUNTAIN BE	LTS,
383	01:18:28:08	01:18:31:02	WE RECOGNIZE THERE ARE
		REALLY TWO	PORTIONS
384	01:18:31:04	01:18:32:17	AN INTERIOR PORTION
385	01:18:32:19	01:18:34:17	OF METAMORPHIC ROCKS
		AND IGNEOUS	
386	01:18:34:19	01:18:37:02	
007	04 40 07 04	TO THAT CON	
387	01:18:37:04	01:18:39:02	AND THEN AN OUTBOARD
200	01.10.20.04	PURTION,	
300	01.16.39.04		
200	01.10.10.20	OR SUSPECT	
309	01.10.42.20		
300	01.18.44.20		
550	01.10.44.20	AGES OF ANC	
391	01:18:49:07	01:18:51:03	REGARDLESS
		OF HOW THE	Y FORM,
392	01:18:51:05	01:18:53:03	MOUNTAIN BELTS
		ALONG CONV	ERGENT BOUNDARIES
393	01:18:53:05	01:18:56:03	STOP GROWING
		WHEN SUBDL	JCTION ENDS.
394	01:18:56:05	01:18:57:19	THEY GRADUALLY DETERIORATE
395	01:18:57:21	01:19:01:22	TO BECOME PART OF THE
		LOW-LYING C	RATON ITSELF.
396	01:19:01:24	01:19:03:22	ULTIMATELY, OF COURSE,
397	01:19:03:24	01:19:07:02	MOUNTAIN BUILDING ENDS,
398	01:19:07:04	01:19:12:02	AND THAT SIGNALS THE END
000	04 40 40 04	OF CONVERGI	ENT PLATE MOTION.
399	01:19:12:04	01:19:13:17	
400	01:19:13:19		
101	01.10.10.20		
401	01.19.16.20		
102	01.10.20.20	01·10·22·12	RATHER THAN COMPRESS IT
402	01.19.20.20	01.19.22.12	AND THE FORCES
400	01.10.22.14	OF FROSION	
404	01.19.25.04	01.19.28.13	ONCE THIS CONSTRUCTIONAL
	0	STAGE IS OVE	R.
405	01:19:28:15	01:19:29:17	TAKE OVER.
406	01:19:29:19	01:19:32:03	GONE, TOO, ALSO,
		IS THE VOLCA	NISM
407	01:19:32:05	01:19:34:03	THAT CHARACTERIZES
		EARLY AND M	IDDLE STAGES
408	01:19:34:05	01:19:35:22	OF MANY MOUNTAIN BELTS.
409	01:19:35:24	01:19:39:27	BUT THE ACTUAL

		GEOLOGIC MOUN	ITAINS
410	01:19:39:29	01:19:42:28 AR	RE THEN, UM
411	01:19:43:00	01:19:45:13 TE	RMINATED
		BY EROSIVE PRO	CESSES.
412	01:19:45:15	01:19:47:13 TH	IERE MAY BE
		LATER UPLIFT.	
413	01.19.47.15	01.19.49.03 WH	HICH PROVIDES
	0111011110	STRONG RELIEF	
414	01:19:49:05	01:19:51:03 AN	ID GIVES YOU
	0	TOPOGRAPHIC M	OUNTAINS.
415	01:19:51:05	01:19:54:12 BU	IT THIS LAYER PROCESS
		IS NOT. STRICTLY	(SPEAKING
416	01:19:54:14	01:19:56:02 TH	E MOUNTAIN BUILDING
		PROCESS.	
417	01:19:56:04	01:19:59:05 IT	IS SIMPLY AN UPLIFT
		IN EROSIONAL PR	ROCESS.
418	01:19:59:07	01:20:01:05 IN	EASTERN NORTH AMERICA.
419	01:20:01:07	01:20:03:20 TH	IE APPALACHIAN MOUNTAINS
-		CONTINUE TO EX	XIST
420	01:20:03:22	01:20:05:19 MC	ORE THAN 200 MILLION YEARS
421	01:20:05:21	01:20:08:19 AF	TER THE PLATE COLLISIONS
		THAT FORMED T	HEM.
422	01:20:08:21	01:20:10:04 G/	VEN RATES OF EROSION.
423	01:20:10:06	01:20:12:19 TH	IESE MOUNTAINS
		SHOULD HAVE W	VORN FLAT
424	01:20:12:21	01:20:15:05 TE	INS OF MILLIONS
		OF YEARS AGO.	
425	01:20:15:07	01:20:16:20 YE	T THEY STILL STAND.
426	01:20:16:22	01:20:20:14 INL	DICATING THAT SOME UPLIFT
		MUST BE CONTIN	NUING.
427	01:20:21:28	01:20:24:25 TH	IE CAUSE OF THIS PUZZLING
		LATE STAGE UPL	LIFT
428	01:20:24:27	01:20:26:10 WA	AS DISCOVERED IN 1859
429	01:20:26:12	01:20:29:10 BY	' BRITISH SURVEYOR
		G.B. AIRY.	
430	01:20:29:12	01:20:31:00 WH	HILE WORKING IN INDIA,
431	01:20:31:02	01:20:33:20 AIF	RY DISCOVERED
		THAT PLUMB-BO	BS
432	01:20:33:22	01:20:36:21 IRC	ON WEIGHTS USED TO LEVEL
		SIGHTING INSTR	UMENTS
433	01:20:36:23	01:20:38:21 WE	ERE LESS ATTRACTED
		BY THE GRAVITY	/
434	01:20:38:23	01:20:40:06 FR	ROM THE NEARBY
		HIMALAYAN MOU	INTAINS
435	01:20:40:08	01:20:41:21 TH	IAN THEY SHOULD BE,
436	01:20:41:23	01:20:43:22 IF	THE HIMALAYA
		WERE DIRECTLY	' UNDERLAIN
437	01:20:43:24	01:20:45:07 BY	' THE SAME DENSE ROCK
438	01:20:45:09	01:20:47:27 PR	RESUMED TO FORM MOST
		OF THE EARTH'S	SINTERIOR.
439	01:20:50:23	01:20:52:05 TH	IIS SUGGESTED
440	01:20:52:07	01:20:55:02 TH	IERE WAS LESS MASS PRESENT
		BENEATH THE HI	IMALAYA
441	01:20:55:04	01:20:56:20 TH	IAN PREVIOUSLY THOUGHT.
442	01:20:56:22	01:20:58:16 TO) EXPLAIN
		THIS DISCREPAN	NCY,

443	01:20:58:18	01:20:59:29	AIRY CONCLUDED
444	01:21:00:03	01:21:04:23	THAT A LOW-DENSITY ROOT
		MUST LIE BEN	IEATH THE RANGE.
445	01:21:04:25	01:21:06:28	GEOPHYSICAL STUDIES
		HAVE SINCE (CONFIRMED
446	01.21.02.00	01.21.09.13	THAT THE CRUST
	01121101100	BENEATH THE	- HIMALAYA
447	01.21.09.15	01.21.12.03	EXTENDS TO A DEPTH
	01.21.00.10	OF 75 KII OME	TERS
448	01.21.12.05	01.21.15.13	TWICE AS THICK AS ORDINARY
110	01.21.12.00	CONTINENTAL	
119	01.21.17.05	01.21.18.14	IT'S NOW KNOWN
450	01:21:17:00	01.21.10.14	THAT MOST MOLINITAIN RANGES
400	01.21.10.10	ARELINDERL	
151	01.21.20.20	01.21.22.04	BV CRUSTAL ROOTS
457	01.21.20.20	01.21.22.04	
452	01.21.22.00	DIASTICALIV	
152	01.21.25.15	01-21-26-29	
455	01.21.23.13	01.21.20.20	
454	01.21.27.00		
155	01.01.01.16	DUNING FLAT	AS MOUNITAIN DANCES
400	01.21.31.10		AS MOUNTAIN RANGES
156	01.21.24.01	ARE WORN D	THEID DOOTS ADE BLIOVED
430	01.21.34.01		
457	01.21.29.06	0FWARD DT 1	
437	01.21.30.00	101.21.40.04	
158	01.21.40.06	01·21·41·22	
450	01.21.40.00	01.21.41.23	THE CRUST ELOATS LIDWARD
-00	01.21.41.20		V
460	01.21.44.11	01.51.42.00	SUSTAINING A HILLY
400	01.21.44.11	TOPOGRAPH	VIN THE LANDSCAPE
461	01.21.47.11	01.21.49.18	FOR HUNDREDS
101	0112111111	OF MILLIONS	OF YFARS
462	01:21:51:05	01:21:52:29	AS THE CRUST RISES.
463	01.21.53.01	01:21:55:28	ROCKS FROM EVER-DEEPER
100	01121100101	I EVELS INSID	F THE FARTH
464	01.21.56.00	01.21.59.28	ARE BROUGHT TO THE SURFACE
	01121100100	AND WORN A	WAY.
465	01:22:00:00	01:22:02:21	THE FLOATING OF EARTH'S
		CRUST ATOP	THE MANTLE
466	01:22:02:23	01:22:05:01	IS TERMED ISOSTASY.
467	01:22:08:18	01:22:11:06	THIS IS SIMILAR
		TO WHAT HAF	PPENS AT SEA.
468	01:22:11:08	01:22:12:21	WHERE LARGE ICEBERGS FLOAT
469	01:22:12:23	01:22:15:02	WITH MORE ICE EXTENDING
		BENEATH THE	ESURFACE
470	01:22:15:04	01:22:16:17	THAN SMALL ONES DO.
471	01:22:18:19	01:22:20:01	IN THE SAME WAY,
472	01:22:20:03	01:22:22:01	TALL MOUNTAINS
		USUALLY HAV	/E ROOTS
473	01:22:22:03	01:22:23:16	EXTENDING DEEPER
		INTO THE EAP	RTH
474	01:22:23:18	01:22:27:01	THAN LOW MOUNTAINS MADE UP
		OF THE SAME	ROCK TYPE.
475	01:22:28:18	01:22:30:02	IN BOTH CASES,
476	01:22:30:04	01:22:32:17	FAR MORE MASS

		LIES HIDDEN FROM VIEW
477	01:22:32:19	01:22:35:08 THAN CAN BE SEEN
		AT THE SURFACE.
478	01.22.35.10	01:22:37:16 ISOSTASY IS THE PROCESS
	01.22.00.10	BY WHICH
479	01.22.37.18	
475	01.22.37.10	
100	01.00.40.17	
400	01.22.40.17	
481	01:22:42:02	
		EQUILIBRIUM WITH ONE ANOTHER.
482	01:22:44:17	01:22:47:01 WHEN YOU BUILD UP
		A LARGE MOUNTAIN RANGE,
483	01:22:47:03	01:22:49:16 YOU'RE LIABLE TO HAVE
		A ROOT UNDERNEATH
484	01:22:49:18	01:22:54:00 AND A LOT OF MATERIAL
		PILED UP HIGH
		ON THE EARTH'S SURFACE.
485	01:22:54:02	01:22:58:00 ULTIMATELY, IF
		YOU DON'T HAVE FORCES
		TO KEEP IT PILED UP,
486	01:22:58:02	01:23:00:13 THAT IS GOING TO TEND
		TO WANT TO EQUILIBRATE
487	01:23:00:15	01:23:02:13 AND FLOAT IN
	0.1.20.001.10	GRAVITATIONAL FOULLIBRIUM
488	01.23.02.15	01.23.04.26 WITH THE OTHER AREAS
400	01.20.02.10	
190	01.22.04.29	
409	01.23.04.20	
400	01.00.00.01	
490	01.23.09.01	
101	04 00 40 04	UNDERGU EXTENSIONAL CULLAPSE,
491	01:23:12:01	01:23:13:14 OR BREAKING APART,
492	01:23:13:16	01:23:16:28 AT THE HIGH LEVELS DUE
		TO THE FORCE OF GRAVITY.
493	01:23:17:00	01:23:18:13 AT THEIR DEEPER LEVELS,
494	01:23:18:15	01:23:20:13 THERE MAY BE PLASTIC FLOW
		UNDERNEATH THEM
495	01:23:20:15	01:23:22:28 OR COMPENSATION BY FLOW
		IN THE MANTLE
496	01:23:23:00	01:23:27:06 IN ORDER TO LET WHATEVER
		ROOT THAT EXISTS
		TO EQUILIBRATE
497	01:23:27:08	01:23:29:21 AND TO COME TO
		GRAVITATIONAL EQUILIBRIUM
498	01:23:29:23	01:23:33:28 WITH THE MANTLE AND
		THE LOWER CRUST AROUND IT
499	01.23.34.00	01:23:36:28 DURING THIS STAGE
100	01120101100	
500	01.23.37.00	
500	01.23.37.00	
501	01.00.40.04	
501	01.23.43:01	
		OVER THE UPLIFT PROCESS

502	01:23:47:15	01:23:50:13 AND THE MOUNTAIN BELT
503	01.23.50.15	
505	01.23.30.15	LOWED DELICE SUDEACE
504	01.00.50.15	
504	01:23:53:15	
505	01:23:55:00	
500	04 00 50 04	
506	01:23:58:01	01:24:00:07 TO BECOMING
		PART OF THE CRATON.
507	01:24:01:14	01:24:02:27 THROUGH GEOLOGIC TIME,
508	01:24:02:29	01:24:05:12 THE AMOUNT OF CONTINENTAL
		MATERIAL ON EARTH
509	01:24:05:14	01:24:07:11 HAS SLOWLY
		GROWN IN SIZE
510	01:24:07:13	01:24:10:17 AT THE EXPENSE
		OF THE OCEAN BASINS.
511	01:24:12:01	01:24:14:26 BUT TRACING THE GROWTH
		ON INDIVIDUAL CONTINENTS
512	01:24:14:28	01:24:16:12 IS A GREAT CHALLENGE,
513	01:24:16:14	01:24:17:27 FOR EACH
		CONTINENT TODAY
514	01:24:17:29	01:24:21:12 HAS BEEN JOINED TO OTHER
		CONTINENTS IN THE PAST.
515	01:24:22:23	01:24:25:11 THE GENERAL PATTERN
		IN CONTINENTS
516	01:24:25:13	01:24:29:26 IS TO FIND THE OLDEST
		MATERIAL IN THE INTERIORS
		OF THE CRATONS.
517	01:24:29:28	01:24:33:12 THIS IS BECAUSE THE CORES
		OF THE CONTINENTS FORMED
518	01:24:33:14	01:24:35:27 AND THEN THE SUCCESSIVE
		MOUNTAIN BELTS
519	01:24:35:29	01:24:39:11 AND CONTINENT EDGE
		ACCRETIONS OCCURRED
		AROUND THEIR MARGINS.
520	01:24:40:28	01:24:44:11 BUT GEOLOGISTS FIND THAT
		PATTERN TO BE IMPERFECT,
521	01:24:44:13	01:24:48:27 BECAUSE CONTINENTAL MASSES TEND
		TO BREAK AND RIFT APART
522	01:24:48:29	01:24:50:12 DURING THEIR GROWTH.
523	01:24:51:29	01:24:53:27 AND SO
		AS THEY BREAK APART,
524	01:24:53:29	01:24:56:26 THEY MAY BREAK APART
		ACROSS OLDER INTERIORS
		OF CONTINENTS,
525	01:24:56:28	01:24:58:25 ACROSS YOUNGER
		MOUNTAIN BELTS,
526	01:24:58:27	01:25:00:10 AND THEN SUBSEQUENTLY,
527	01:25:00:12	01:25:03:09 THEY MAY FORM
		A NEW MOUNTAIN BELT
		ACROSS A BROKEN EDGE.
528	01:25:03:11	01:25:05:24 THAT LEADS US WITH
		A COMPETING SERIES
		OF PROCESSES
529	01:25:05:26	01:25:07:09 OF MARGINAL GROWTH
		AND BREAKING APART

530	01:25:07:11	01:25:09:25 AND DRIFTING AND THEN
		COLLIDING BACK TOGETHER
531	01:25:09:27	01:25:11:14 AND GROWING AGAIN.
532	01:25:14:12	01:25:16:24 MOUNTAIN RANGES,
		NEWLY FORMING AND ANCIENT,
533	01:25:16:26	01:25:18:24 MARK THE GROWTH
		OF CONTINENTS
534	01:25:18:26	01:25:20:09 IN RESPONSE
		TO PLATE MOVEMENTS.
535	01:25:22:10	01:25:24:08 FLOATING ON EARTH'S
		PLASTIC MANTLE,
536	01:25:24:10	01:25:27:10 THESE GIGANTIC TOPOGRAPHIC
		FEATURES DISAPPEAR SLOWLY.
537	01:25:27:12	01:25:31:09 AS THEIR LOW-DENSITY
		ROOTS ARE BUOYED UP.
538	01:25:31:11	01:25:35:02 SO MOUNTAINS OWE THEIR
	0.12010.111	EXISTENCE TO TWO FACTORS
539	01.22.32.04	01.25.37.24 THE HEAT THAT DRIVES
000	01.20.00.01	
540	01.22.32.26	01.25.40.25 AND THE EFEECTS
0-0	01.20.07.20	
5/1	01.25.40.27	01:25:43:25 IN TIME
541	01.20.40.27	
E10	01.25.42.27	
<u>342</u>	01.25.45.27	
E 4 0	01.05.40.05	
543	01:25:46:05	U1:25:49:24 THE OLDEST, MOST STABLE
	04 05 50 00	LANDS ON PLANET EARTH.
544	01:25:52:03	01:25:54:09 ONE OF THE BENCHMARK
545	01:25:54:11	01:25:56:10 OVER THE LAST
		HALF CENTURY
546	01:25:56:12	01:25:58:05 IS THE ORIGIN
		OF MOUNTAIN RANGES.
547	01:25:58:07	01:26:00:18 CONTINENTS
		AND OCEAN CRUST
		HAVE COLLIDED
548	01:26:00:20	01:26:03:03 OR SUBDUCTED
		AT TECTONIC
		PLATE MARGINS,
549	01:26:03:05	01:26:05:03 MOUNTAIN RANGES
		HAVE BEEN FORMED,
550	01:26:05:05	01:26:08:02 AND PROCESSES OF EROSION
		HAVE TORN THEM DOWN.
551	01:26:08:04	01:26:10:17 EVENTUALLY,
		THE CONTINENTS
		ARE SPLIT APART
552	01:26:10:19	01:26:12:03 BY RENEWED
		PLATE DIVERGENCE
553	01:26:12:05	01:26:13:26 AND ARE ON THEIR WAY
		TO NEW COLLISIONS,
554	01:26:13:28	01:26:15:11 OFTEN FORMING
		A SUPERCONTINENT.
555	01:26:15:13	01:26:17:08 THIS TECTONIC CYCLE,
556	01:26:17:10	01:26:20:08 SOMETIMES REFERRED
		TO AS THE DANCE
		OF THE CONTINENTS,
		·

557	01:26:20:10	01:26:23:08 HAS BEEN REPEATED
		MANY TIMES IN
		THE GEOLOGIC PAST,
558	01:26:23:10	01:26:24:22 WITH EACH
		COMPLETE CYCLE
559	01:26:24:24	01:26:26:20 LASTING
		SEVERAL HUNDRED
		MILLION YEARS.
560	01:26:26:22	01:26:29:05 SOME ASPECTS OF
		THIS TECTONIC DANCE
561	01:26:29:07	01:26:31:07 HAVE SURPRISINGLY
		COMPLICATED STEPS.
562	01:26:31:09	01:26:32:23 ALASKA, FOR EXAMPLE,
563	01:26:32:25	01:26:34:23 IS LARGELY COMPOSED
		OF PLATE FRAGMENTS
564	01:26:34:25	01:26:37:23 THAT HAVE BEEN
		PACKED TOGETHER BY
		SUCCESSIVE COLLISIONS.
565	01:26:37:25	01:26:39:08 SOME OF THESE
		TERRAINS
566	01:26:39:10	01:26:41:22 HAVE BEEN TECTONICALLY
		TRANSPORTED THOUSANDS
		OF KILOMETERS
567	01:26:41:24	01:26:44:22 BY SEA FLOOR SPREADING
		AND STRIKE-SLIP FAULTING
568	01:26:44:24	01:26:47:19 BEFORE COLLIDING
		WITH NORTH AMERICA
		TO FORM ALASKA.
569	01:26:47:21	01:26:50:18 THE MEDITERRANEAN
		SEA IS A SHRINKING
		OCEAN BASIN
570	01:26:50:20	01:26:53:18 CAUGHT IN A COLLISION
		BETWEEN THE COLLIDING
		CONTINENTS
571	01:26:53:20	01:26:55:03 OF AFRICA AND EUROPE.
572	01:26:55:05	01:26:57:03 THE FAMOUS VOLCANOES
		AND EARTHQUAKES
573	01:26:57:05	01:26:59:19 AND INTENSELY DEFORMED
		MOUNTAINS OF THIS REGION
574	01:26:59:21	01:27:02:05 ARE EVIDENCE
••••		OF THE PROFOUND
		MOUNTAIN BUILDING
575	01:27:02:07	01:27:04:20 THAT ACCOMPANIES
0.0	0.121102.01	THE DEATH OF AN OCEAN.
576	01.22.04.55	01.27.06.05 TECTONIC CYCLES
0.0	01121101122	AND MOUNTAIN BUILDING
577	01.22.08.02	01.27.09.05 ARE NEARLY AS OLD
011	01.27.00.07	AS THE FARTH ITSELF
578	01.22.00.02	01.27.13.00 AND THE FORECAST FOR
570	01.27.00.07	
		IS CONTINUED CHANGE
570	01.22.13.02	0.00000000000000000000000000000000000
515	01.27.10.02	BASINS AND CONTINENTS
580	01.22.16.20	
500	01.27.10.29	THE FACE OF THE FARTH

581	01:27:19:07	01:27:21:20	A MAP OF THE WORLD
		A BILLION YEA	RS FROM NOW
582	01:27:21:22	01:27:23:05	WILL BEAR
		SCANT RESEM	IBLANCE
583	01:27:23:07	01:27:25:16	TO THE WORLD
		WE KNOW TO	DAY.
584	01:28:17:21	01:28:20:19	CAPTIONING PERFORMED BY
		THE NATIONAL	L CAPTIONING
		INSTITUTE, INC	С.
585	01:28:20:21	01:28:23:19	CAPTIONS COPYRIGHT 1991
		THE CORPORA	ATION FOR
		COMMUNITY C	COLLEGE TELEVISION
586	01:28:31:20	01:28:35:03	Annenberg Media
587	01:28:35:05	01:28:40:09	§
588	01:28:40:11	01:28:41:25	For information
		about this	
589	01:28:41:27	01:28:44:11	and other Annenberg
		Media programs	5
590	01:28:44:13	01:28:46:29	call 1-800-LEARNER
		and visit us at	
591	01:28:47:01	01:28:47:01	www.learner.org.