1 2	01:30:58:14 01:31:01:28	01:31:57:09 §
3	01:31:57:11	01:32:01:11 ON AN ACTIVE LAVA POOL LIKE THIS ONE IN HAWAII,
4	01:32:01:13	01:32:02:23 CRUSTAL FRAGMENTS SEPARATE.
5	01:32:02:25	01:32:05:08 SLIP PAST ONE ANOTHER, AND COLLIDE,
6	01:32:05:10	01:32:08:14 CONTINUOUSLY REARRANGING AND DEFORMING THE SURFACE.
7	01:32:12:11	01:32:14:24 THE COLLISIONS THAT WE'VE JUST SEEN
8	01:32:14:26	01:32:16:08 MAY SEEM COMPLETELY UNRELATED
9	01:32:16:10	01:32:18:24 TO THIS SERENE AND BEAUTIFUL LANDSCAPE,
10	01:32:18:26	01:32:21:11 BUT, IN FACT, THIS VALLEY AND THESE MOUNTAINS
11	01:32:21:13	01:32:24:24 ARE THE DIRECT RESULT OF VERY SIMILAR
12	01:32:24:26	TYPES OF INTERACTIONS 01:32:27:25 BETWEEN TWO OF THE EARTH'S ADJACENT PLATES.
13	01:32:27:27	01:32:30:10 PLATES ARE THE RIGID SLABS OF ROCK
14	01:32:30:12	01:32:32:23 THAT COMPRISE THE OUTER SURFACE OF THE EARTH.
15	01:32:32:25	01:32:34:08 THEY'RE TREMENDOUS IN SIZE,
16	01:32:34:10	01:32:37:09 SOMETIMES ENCOMPASSING ENTIRE CONTINENTS,
17	01:32:37:11	01:32:39:23 AND THEY'RE MOVING AND INTERACTING WITH ONE ANOTHER
18 19	01:32:39:25 01:32:41:15	01:32:41:13 AT THEIR BOUNDARIES. 01:32:43:14 BECAUSE THE PLATES
20	01:32:43:16	ARE RIGID, 01:32:46:09 THEIR INTERIORS
		ARE RELATIVELY INACTIVE TECTONICALLY.
21	01:32:46:11	01:32:48:09 THE BOUNDARY BETWEEN PLATES, HOWEVER,
22	01:32:48:11	
23	01:32:51:25	01:32:53:09 PLATE BOUNDARIES COINCIDE
24	01:32:53:11	01:32:56:21 WITH NARROW ZONES OF EARTHQUAKES AND ACTIVE VOLCANOES,
25	01:32:56:23	01:32:58:21 RAPIDLY RISING MOUNTAIN RANGES,
26 27	01:32:58:23 01:33:00:22	01:33:00:20 AND DEEP-SEA TRENCHES.
28	01:33:00.22	IS ONE SUCH PLATE BOUNDARY.
20	01.00.04.00	

		THE SAN ANDREAS FAULT
00	04-00-07-00	
29	01:33:07:02	01:33:09:29 ON THIS SIDE, THE NORTH AMERICAN PLATE
30	01:33:10:01	01:33:11:15 IS GRINDING FITFULLY
31	01:33:11:17	
01	01.00.11.17	OVER HERE.
32	01:33:13:24	01:33:15:21 THE RESULT
		OF THIS INTERACTION
33	01:33:15:23	01:33:18:07 ARE SUDDEN AND SOMETIMES
		DEVASTATING EARTHQUAKES.
34	01:33:18:09	01:33:20:23 OVER TIME,
35	01:33:20:25	HAS RESULTED 01:33:23:22 IN THE STEADY UPLIFT
35	01.33.20.25	OF THESE MOUNTAIN RANGES.
36	01:33:23:24	01:33:27:06 PLATE BOUNDARIES
00	01100120121	ARE DIRECTLY RELATED
		TO GEOLOGIC HAZARDS,
37	01:33:27:08	01:33:29:22 TO THE FORMATION
		OF PETROLEUM
		AND MINERAL RESOURCES,
38	01:33:29:24	01:33:31:23 AND TO THE GEOLOGIC
	04.00.04.05	
39	01:33:31:25	01:33:34:21 OF THE LANDSCAPES
40	01:33:34:23	ON WHICH WE LIVE. 01:33:36:21 SO UNDERSTANDING
40	01.33.34.23	HOW PLATES MOVE
41	01:33:36:23	01:33:38:22 AND INTERACT
		AT THEIR BOUNDARIES
42	01:33:38:24	01:33:41:07 IS NOT ONLY ONE
		OF THE MOST INTERESTING,
43	01:33:41:09	01:33:43:18 BUT ALSO ONE OF
		THE MOST IMPORTANT GOALS
44	01:33:43:20	01:33:45:21 OF THE CURRENT GENERATION
45	01:33:47:01	OF EARTH SCIENTISTS. 01:33:49:07 WRAPPING LIKE A NET
40	01.33.47.01	AROUND THE GLOBE,
46	01:33:49:09	01:33:51:23 THE BOUNDARIES
10	01100110100	OF THE PLATES IN MOST PLACES
47	01:33:51:25	
		TO THE EDGES OF THE CONTINENTS
48	01:33:54:23	
49	01:33:56:03	01:33:57:29 SO, MOST PLATES CONTAIN
50	01:33:58:01	01:34:00:20 BOTH CONTINENTAL
F 4	04-04-00-00	AND OCEANIC CRUST.
51	01:34:00:22	01:34:03:20 IN ALL, ABOUT A DOZEN LARGE PLATES
52	01:34:03:22	01:34:05:04 AND MANY
52	01.04.00.22	SMALLER MICROPLATES
53	01:34:05:06	01:34:07:16 HAVE BEEN IDENTIFIED
		BY EARTH SCIENTISTS.
54	01:34:09:08	01:34:11:05 IN FEW PLACES
		CAN ONE SEE
55	01:34:11:07	
		BETTER EXPOSED

56	01:34:13:08	01:34:16:04 THAN IN ICELAND, ATOP
57	01:34:18:07	THE MID-ATLANTIC RIDGE. 01:34:20:11 IN A BROAD ZONE
		ACROSS ICELAND,
58	01:34:20:13	01:34:22:11 GREAT TENSIONAL CRACKS CALLED RIFTS
59	01:34:22:13	
60		01:34:26:06 FREQUENT SMALL,
	0.110 112 1120	SHALLOW EARTHQUAKES
61	01:34:26:08	
		THIS RIFT ZONE.
62	01:34:30:06	
63	01:34:31:27	01:34:34:04 ARE EVIDENCE THAT THE CRUST IS HOT.
64	01:34:34:06	
65	01:34:35:21	01:34:38:18 GREAT VOLUMES OF FLUID
05	01.04.00.21	BASALTIC LAVA AND ASH
66	01:34:38:20	
00	01101100120	AND VOLCANIC CRATERS.
67	01:34:42:16	
		IS BEING PULLED APART.
68	01:34:45:23	
		THE FISSURES THAT OPEN,
69	01:34:49:06	01:34:50:18 IT SOLIDIFIES,
70	01:34:50:20	01:34:53:05 ADDING NEW CRUST TO
71	01:34:53:07	THE EDGES OF THE PLATE. 01:34:55:18 AS THE OLDER ROCK
11	01.34.33.07	IS PULLED AWAY,
72	01:34:55:20	01:34:58:03 NEW MAGMA RISES
		TO COOL, HARDEN,
73	01:34:58:05	
		IN ITS PLACE.
74		
75	01:35:02:21	01:35:05:03 IS CALLED
76	01:35:05:05	A DIVERGENT BOUNDARY 01:35:08:08 FOR HERE, THE PLATES
70	01.55.05.05	SEPARATE FROM ONE ANOTHER.
77	01:35:11:05	01:35:13:02 A DRAMATIC EXAMPLE
	01100111100	OF THIS
78	01:35:13:04	01:35:16:02 CAN BE SEEN ON
		THE AFRICAN CONTINENT.
79	01:35:16:04	01:35:18:19 IN EASTERN AFRICA,
		A DIVERGENT BOUNDARY
80	01:35:18:21	01:35:20:04 PARTIALLY
01	01.25.20.06	SPLITS THE LANDSCAPE.
81 82	01:35:20:06 01:35:21:21	01:35:21:19 TO THE NORTH, 01:35:24:03 SO MUCH NEW CRUST
02	01.33.21.21	HAS FORMED
83	01:35:24:05	01:35:26:03 THAT AFRICA
		AND SAUDI ARABIA,
84	01:35:26:05	01:35:27:18 ONCE JOINED TOGETHER.
85	01:35:27:20	01:35:29:08 HAVE SPLIT APART.
86	01:35:29:10	01:35:32:19 WITH THE RED SEA FLOODING
		THE WIDE VALLEY IN BETWEEN.
87	01:35:32:21	01:35:34:18 RIFTING HAS
		ALSO OPENED UP

88	01:35:34:20	01:35:37:04 THE GULF OF ADEN
		TO THE EAST.
89	01:35:37:06	01:35:40:03 IN TIME, THESE YOUNG SEAWAYS
		WILL GROW LARGER,
90	01:35:40:05	01:35:41:16 SOMEDAY, PERHAPS,
91	01:35:41:18	01:35:44:08 BECOMING AS WIDE
		AS THE ATLANTIC TODAY.
92	01:35:46:08	01:35:50:03 OCEANIC CRUST COMPRISES
	0	ABOUT 70% OF EARTH'S SURFACE.
93	01:35:50:05	01:35:51:20 MOST OF THIS CRUST
94	01:35:51:22	01:35:54:16 ORIGINATED BY INJECTION
34	01.33.31.22	AND ERUPTION OF MAGMA
05	01.25.54.10	
95	01:35:54:18	01:35:56:02 AT DIVERGENT BOUNDARIES,
96	01:35:56:04	01:35:58:02 EXPRESSED
		AS MID-OCEAN RIDGES
97	01:35:58:04	01:36:00:16 CAPPED BY RIFT ZONES.
98	01:36:00:18	01:36:02:16 THIS PROCESS
		OF CRUSTAL GROWTH
99	01:36:02:18	01:36:04:16 IS CALLED
		SEA FLOOR SPREADING.
100	01:36:04:18	01:36:07:15 EARTH'S VOLUME HAS REMAINED
		ESSENTIALLY THE SAME
101	01:36:07:17	
102	01:36:09:03	01:36:10:16 AS A RESULT,
102	01:36:10:18	01:36:13:16 PLATES CAN GROW LARGER
105	01.30.10.10	BY SEA FLOOR SPREADING
101	04.00.40.40	
104	01:36:13:18	
405	<u></u>	ARE GROWING SMALLER.
105	01:36:17:18	01:36:19:15 PLATES ARE REDUCED
		IN SIZE
106	01:36:19:17	01:36:21:16 OR DESTROYED
		WHERE THEY CONVERGE,
107	01:36:21:18	01:36:24:15 CREATING SOME OF THE MOST
		DRAMATIC TOPOGRAPHY
108	01:36:24:17	01:36:26:01 ANYWHERE ON EARTH.
109	01:36:26:03	01:36:27:17 AN IMPORTANT LAND FORM
110	01:36:27:19	01:36:29:16 MARKING THE COLLISION
-		BETWEEN PLATES
111	01:36:29:18	01:36:32:01 IS A DEEP MARINE TRENCH.
112	01:36:32:03	01:36:35:00 HERE, ONE PLATE
112	01.00.02.00	SLIPS BENEATH THE OTHER
113	01:36:35:02	
115	01.30.33.02	CALLED SUBDUCTION.
111	01.26.20.10	
114	01:36:38:18	
		ARE TOO BUOYANT TO SUBDUCT
115	01:36:41:19	
		CRUMPLE TOGETHER.
116	01:36:46:04	01:36:50:01 THERE ARE THREE
		BASIC TYPES OF CONVERGING
		PLATE BOUNDARIES,
117	01:36:50:03	01:36:53:01 AND THIS IS BASED
		ON THE TYPES OF CRUSTS
118	01:36:53:03	01:36:55:29 THAT ARE INVOLVED
-		ON BOTH SIDES OF
		THE CONVERGING BOUNDARY.
119	01:36:56:01	01:36:59:15 THE FIRST TYPE WOULD

		BE AN OCEAN-OCEAN
		CONVERGENCE ZONE.
120	01:36:59:17	
		BE THE MARIANA TRENCH
		AND ISLANDS.
121	01:37:03:08	
		IN THIS AREA
122	01:37:05:23	01:37:08:14 IS THAT THERE
123	01:37:08:16	01:37:09:29 ABOVE THE
404	04 07 40 04	
124	01:37:10:01	01:37:13:28 AND IN THIS CASE,
125	01.07.14.00	
125	01:37:14:00	01:37:16:15 TYPICALLY, THE LAVAS
126	01:37:16:17	THAT ARE ERUPTED 01:37:21:17 ARE A LITTLE MORE BASALTIC
120	01.37.10.17	THAN WHAT YOU SEE
		IN A CONTINENTAL AREA.
127	01:37:21:19	
121	01.57.21.19	BE WHEN AN OCEANIC PLATE
128	01:37:25:01	01:37:27:29 IS GOING DOWN UNDER
120	01.07.20.01	A CONTINENTAL PLATE.
129	01:37:28:01	01:37:30:14 THE TYPE EXAMPLE
	0	OF THIS
130	01:37:30:16	01:37:33:00 WOULD BE THE ANDES
		IN SOUTH AMERICA,
131	01:37:33:02	
132	01:37:34:17	
		THE SOUTH AMERICAN CONTINENT.
133	01:37:37:02	01:37:40:00 IN THIS AREA, ABOVE
		THE SUBDUCTION ZONE,
134	01:37:40:02	01:37:43:10 YOU HAVE AN ANDESITIC
		AND SOMETIMES
		RHYOLITIC VOLCANIC CHAIN,
135	01:37:43:12	01:37:49:15 WHICH IS MUCH MORE OVERALL
		GRANITIC COMPOSITION
		WHICH IS ERUPTING.
136	01:37:49:17	01:37:52:15 THE THIRD EXAMPLE WOULD
		BE A CONTINENT-CONTINENT
407	04 07 50 47	
137	01:37:52:17	01:37:54:28 OR WHAT WE CALL
138	01:37:55:00	
130	01:37:56:15	01:37:56:13 AND IN THIS CASE, 01:37:58:27 WHAT HAPPENED
129	01.37.30.15	IS THAT THERE USED TO BE
140	01:37:58:29	01:38:01:21 AN INTERVENING
140	01.57.50.29	OCEAN BASIN
		AN OCEANIC PLATE
141	01:38:01:23	01:38:04:06 BEING SUBDUCTED
	01.00.01.20	OR CONVERGING
142	01:38:04:08	01:38:07:09 UNDERNEATH ONE OR BOTH
	01100101100	OF THE CONTINENTS.
143	01:38:07:11	01:38:11:13 AS THE OCEANIC PLATE
-		DISAPPEARED BENEATH
		THE CONTINENT,

144	01:38:11:15	01:38:13:28 THE TWO BUOYANT CONTINENTS COLLIDED,
145	01:38:14:00	01:38:16:27 AND WE GET THIS ZONE
		OF MOUNTAIN RANGE UPLIFTED,
146	01:38:16:29	01:38:20:10 LIKE THE HIMALAYAS OR THE ALPS,
147	01:38:20:12	01:38:23:22 AND TYPICALLY WHAT WILL HAPPEN
148	01:38:23:24	01:38:28:28 IS THAT CONVERGENCE
140	01.00.20.24	WILL STOP ALONG THAT ZONE.
149	01:38:29:00	01:38:31:27 IN THE THREE TYPES OF PLATE
149	01.36.29.00	
450	04-00-04-00	
150	01:38:31:29	01:38:34:27 OCEANIC ROCK ALWAYS SINKS
		BENEATH CONTINENTAL ROCK
151	01:38:34:29	01:38:36:12 BECAUSE OCEANIC CRUST
152	01:38:36:14	01:38:38:12 IS TYPICALLY DENSER
		AND HEAVIER
153	01:38:38:14	01:38:40:01 THAN CONTINENTAL CRUST. 01:38:41:13 ONCE SUBDUCTION STARTS, 01:38:43:28 IT MAY BE SUSTAINED
154	01:38:40:03	01:38:41:13 ONCE SUBDUCTION STARTS,
155	01:38:41:15	01:38:43:28 IT MAY BE SUSTAINED
100	01.00.11.10	IN PART
156	01:38:44:00	01:38:46:27 AS THE WEIGHT OF
150	01.30.44.00	THE DOWN-GOING SLAB
457	04-00-40-00	
157	01:38:46:29	01:38:49:27 DRAGS THE REST
		OF THE PLATE WITH IT.
158	01:38:49:29	01:38:51:12 SUBDUCTION
		IS ALSO SUSTAINED
159	01:38:51:14	01:38:54:12 BY SLOW-MOVING CURRENTS
		OF HOT MANTLE ROCK
160	01:38:54:14	01:38:57:09 WHICH TUG AGAINST
		THE UNDERSIDE OF THE PLATE.
161	01:38:58:23	01:39:00:06 AS THE PLATE SINKS,
162	01:39:00:08	01:39:02:10 EARTHQUAKES OCCUR
-		WITHIN IT.
163	01:39:02:12	
164	01:39:03:28	
104	01.00.00.20	AT THE TRENCH ITSELF
165	01:39:06:13	01:39:07:25 TO VERY DEEP CATACLYSMS
166	01:39:07:27	01:39:10:25 NEAR THE HEATED END
407	04-00-40-07	OF THE DESCENDING SLAB,
167	01:39:10:27	01:39:14:07 AS MUCH AS 700 KILOMETERS
		BENEATH THE SURFACE.
168	01:39:14:09	01:39:15:21 THESE EARTHQUAKES
		ALLOW SEISMOLOGISTS
169	01:39:15:23	01:39:18:20 TO TRACE THE DESCENT
		OF THE SUBDUCTING PLATE
170	01:39:18:22	01:39:21:06 INTO THE MANTLE.
171	01:39:21:08	01:39:23:06 BY DIVING INTO THE MANTLE,
172	01:39:23:08	01:39:26:10 THE SUBDUCTING PLATE
-		CREATES FRICTION AND HEAT,
173	01:39:26:12	01:39:28:10 AND THE BASALTIC
170	51.00.20.12	OCEANIC CRUST
174	01:39:28:12	01:39:30:28 PARTIALLY MELTS UNDER
174	01.33.20.12	
475	04.00.00.44	THE INTENSE PRESSURE.
175	01:39:32:11	01:39:34:11 THE MOLTEN ROCK RISES,
176	01:39:34:13	01:39:37:02 ULTIMATELY REACTING

		WITH OVERLYING ROCKS
177	01:39:37:04	
178		01:39:40:10 WHICH ERUPTS IN CURVING
179	01:39:40:12	
	000	OF VOLCANOES.
180	01:39:43:27	
		PARALLELS THE OCEAN TRENCH,
181	01:39:46:24	01:39:50:06 AND AT SEA, FORMS A STRING
		OF VOLCANIC ISLANDS
182	01:39:50:08	01:39:52:25 KNOWN AS
		AN ISLAND ARC SYSTEM.
183	01:39:55:11	01:39:58:09 WHERE SUBDUCTION OCCURS
		ALONG CONTINENTAL MARGINS,
184	01:39:58:11	01:39:59:23 THE ANDESITIC
		VOLCANIC CHAIN
185	01:39:59:25	01:40:01:23 IS BUILT ATOP DRY LAND,
186	01:40:01:25	01:40:04:23 SOMETIMES TOWERING KILOMETERS
		ABOVE THE LANDSCAPE,
187	01:40:04:25	01:40:07:23 RARELY VERY FAR
		FROM THE SEA.
188	01:40:07:25	01:40:10:04 ERUPTIONS ARE
		FREQUENTLY HAZARDOUS,
189	01:40:10:06	01:40:12:23 UNLIKE THOSE
		AT DIVERGENT BOUNDARIES,
190	01:40:12:25	
191	01:40:14:11	01:40:18:00 ARE MORE VISCOUS AND
		GAS-RICH THAN BASALTIC MAGMAS.
192	01:40:19:18	01:40:21:16 EARTHQUAKES, TOO,
		ARE MORE POWERFUL
193	01:40:21:18	01:40:24:00 AT CONVERGENT THAN AT
		DIVERGENT BOUNDARIES
194	01:40:24:02	01:40:26:26 BECAUSE OF GREATER
		LEVELS OF STRESS
195	01:40:26:28	01:40:28:13 RESULTING
		FROM PLATE COLLISION.
196	01:40:28:15	01:40:30:24 IT IS THIS
		EARTHQUAKE ACTIVITY,
197	01:40:30:26	01:40:32:09 TOGETHER WITH CRUMPLING
198	01:40:32:11	01:40:34:09 AND FOLDING
		OF THE CRUST,
199	01:40:34:11	01:40:37:09 THAT CREATES THE MOUNTAIN
		RANGES LIKE THE ANDES
200	01:40:37:11	01:40:38:25 ALONG CONTINENTAL
		MARGINS
201	01:40:38:27	01:40:41:02 OVERLYING
		SUBDUCTION ZONES.
202	01:40:41:04	01:40:43:02 BUT EARTH'S LARGEST
		MOUNTAIN RANGES
203	01:40:43:04	01:40:44:16 AND PLATEAUS FORM
204	01:40:44:18	01:40:46:02 WHEN TWO
		CONTINENTAL MASSES
205	01:40:46:04	01:40:48:08 ARE BROUGHT TOGETHER
		BY SUBDUCTION
206	01:40:48:10	01:40:50:16 OF INTERVENING
		SEA FLOOR.
207	01:40:50:18	01:40:53:08 LITTLE VOLCANIC ACTIVITY

208	01:40:53:10	01:40:55:23 ACCOMPANIES THIS TYPE OF MOUNTAIN-BUILDING
209	01:40:55:25	01:40:57:09 BECAUSE SUBDUCTION
210	01:40:57:11	
211	• • • • • • • • • •	
		PLATE BOUNDARIES,
212		01:41:06:29 NEITHER DIVERGENCE NOR CONVERGENCE OCCURS.
213	01:41:07:01	01:41:09:29 INSTEAD, TWO PLATES SLIP PAST ONE ANOTHER,
214	01:41:10:01	
215	01:41:13:15	
216	01:41:17:03	
		ENVIRONMENTS
217	01:41:19:03	
		TRANSFORM FAULTS
040	04.44.04.47	
218		IN THE OCEAN BASIN,
219	01:41:24:02	01:41:25:15 AND WE CALL THOSE
220	01:41:25:17	
004		
221	01:41:27:17	01:41:30:09 WHERE THEY OFFSET THE DIVERGING RIDGES.
222	01:41:30:11	01:41:31:23 IN A NUMBER OF INSTANCES,
223	01:41:31:25	
220	01.41.01.20	TRANSFORM FAULTS
224	01:41:33:26	
	0	OR EAT THEIR WAY,
225	01:41:35:25	01:41:37:11 INTO CONTINENTAL CRUST.
226	01:41:37:13	01:41:39:25 THE TYPE
		EXAMPLE OF THIS
227	01:41:39:27	
		SAN ANDREAS FAULT,
228	01:41:41:29	01:41:44:26 WHERE THE GULF
		OF CALIFORNIA SPREADING SYSTEM
220	01-41-44-20	01:41:46:11 CAN BE LINKED UP
229 230	01:41:44:28 01:41:46:13	
230	01.41.40.13	SPREADING SYSTEM,
231	01:41:48:28	01:41:50:25 WHICH IS OFF OF
	0	NORTHERN CALIFORNIA
232	01:41:50:27	01:41:52:19 OR OFF
		OF CAPE MENDOCINO.
233	01:41:52:21	01:41:54:05 AND IN THIS CASE,
234	01:41:54:07	01:41:56:02 THE ZONE OF
005	04-44-50-04	
235	01:41:56:04	01:41:58:03 IS USUALLY
236	01:41:58:05	MUCH MORE COMPLEX 01:42:01:07 BECAUSE THE
200	01.41.30.03	CONTINENTAL PLATE

00 7	~	
237	01:42:01:09	01:42:03:21 OR THE
		IS MORE COMPLEX
238	01:42:03:23	01:42:05:08 THAN
		THE OCEANIC CRUST.
239	01:42:05:10	
240	01:42:06:11	01:42:08:08 IT HAS INTERNAL
		STRUCTURE ALREADY
241	01:42:08:10	
		MILLIONS OF YEARS,
242	01:42:10:24	
243	01:42:12:09	01:42:14:06 MUCH MORE COMPLICATED
		ENVIRONMENT.
244	01:42:14:08	01:42:16:21 MOST GEOLOGISTS
		ARE IN GENERAL AGREEMENT
245	01:42:16:23	01:42:18:06 REGARDING PLATE TECTONIC
		THEORY.
246	01:42:18:08	01:42:19:21 THERE IS
		CONSIDERABLE DEBATE
247	01:42:19:23	
		DRIVE PLATE MOVEMENT.
248	01:42:22:09	01:42:24:21 A GREAT DEAL
		OF CURRENT RESEARCH
249	01:42:24:23	01:42:26:22 FOCUSES ON FINDING
		A MECHANISM.
250	01:42:26:24	01:42:29:06 THIS IS A PARTICULARLY
		CHALLENGING PROBLEM
251	01:42:29:08	01:42:30:21 BECAUSE
		THE MECHANISM OPERATES
252	01:42:30:23	01:42:32:06 DEEP WITHIN
		THE EARTH'S INTERIOR,
253	01:42:32:08	01:42:34:21 WHICH WE CANNOT SEE
		OR SAMPLE DIRECTLY.
254	01:42:34:23	01:42:36:25 THE EARTH'S CRUST
		AND UPPERMOST MANTLE
255	01:42:36:27	01:42:39:01 ACT TOGETHER
		AS A RIGID UNIT.
256	01:42:39:03	01:42:41:15 THIS LAYER, WHICH
		COMPRISES THE PLATES,
257	01:42:41:17	01:42:43:00 IS CALLED THE LITHOSPHERE
258	01:42:43:02	01:42:45:15 AND IS ABOUT
		100 KILOMETERS THICK.
259	01:42:45:17	01:42:47:14 THESE LITHOSPHERIC PLATES
		FLOAT CROWDED TOGETHER
260	01:42:47:16	01:42:49:16 LIKE LILY PADS IN A POND
261	01:42:49:18	01:42:52:01 IN A DEEPER LAYER
		OF THE MANTLE
262	01:42:52:03	01:42:53:16 CALLED THE ASTHENOSPHERE.
263	01:42:53:18	01:42:54:29 UNLIKE THE LITHOSPHERE,
264	01:42:55:01	01:42:57:29 THE ASTHENOSPHERE IS SOFT
		AND PARTIALLY MOLTEN,
265	01:42:58:01	01:43:00:14 SO THE RELATIVELY COOL,
		RIGID LITHOSPHERIC PLATES
266	01:43:00:16	01:43:02:13 CAN MOVE THROUGH
		THE ASTHENOSPHERE
267	01:43:02:15	01:43:04:12 IF ENOUGH FORCE

000	04-40-04-44	
268	01:43:04:14	01:43:06:13 SEVERAL DIFFERENT THEORIES HAVE BEEN ADVANCED
260	01.42.00.45	01:43:08:27 TO TRY TO EXPLAIN
269	01:43:06:15	THE DRIVING FORCE
270	01:43:08:29	
270	01:43:10:16	01:43:10:14 BEHIND THIS PROCESS. 01:43:11:27 ALL AGREE
211	01.45.10.10	THAT THE MECHANISM
272	01:43:11:29	01:43:13:28 FOR PLATE MOVEMENT
212	0111011120	IS SOMEHOW RELATED
273	01:43:14:00	01:43:15:28 TO THE UNEQUAL
	0.1.1011.1.00	DISTRIBUTION OF HEAT
274	01:43:16:00	01:43:17:17 WITHIN THE MANTLE.
275	01:43:17:19	01:43:19:01 WHEN MANTLE ROCKS
276	01:43:19:03	01:43:20:18 ARE HEATED
		UNEVENLY FROM BELOW,
277	01:43:20:20	01:43:23:03 MOST GEOLOGISTS BELIEVE
		THAT THEY CAN CIRCULATE
278	01:43:23:05	01:43:25:02 IN A CYCLIC FASHION
		CALLED CONVECTION.
279	01:43:25:04	01:43:27:16 CURRENTLY, SOME FORM OF
		CONVECTION IN THE MANTLE
280	01:43:27:18	01:43:29:17 IS THE MOST WIDELY
		ACCEPTED MECHANISM
281	01:43:29:19	01:43:31:15 FOR PLATE MOVEMENT.
282	01:43:34:08	01:43:37:06 CONVECTION OCCURS BECAUSE
000	04-40-07-00	
283	01:43:37:08	01:43:40:06 FLOWS LIKE
004	04.40.40.40	A GRADUALLY MOVING FLUID.
284	01:43:43:12	01:43:45:25 JUST AS THE APPLICATION OF HEAT
285	01:43:45:27	01:43:47:25 TO A POT OF WATER
286	01:43:47:27	01:43:49:26 CAUSES THE WARM LIQUID
200	01.43.47.27	TO RISE
287	01:43:49:28	01:43:52:10 AND THE COOLER LIQUID
20.	01110110120	ON TOP TO DESCEND,
288	01:43:52:12	01:43:54:24 SO, TOO, DOES HEAT
200	0	INSIDE THE EARTH
289	01:43:54:26	01:43:57:23 CAUSE PORTIONS
		OF THE MANTLE TO CONVECT.
290	01:44:03:04	01:44:06:01 THE FUNDAMENTAL FORCE
		DRIVING CONVECTION,
291	01:44:06:03	01:44:09:18 WHETHER ON THE STOVE TOP
		OR INSIDE THE EARTH,
292	01:44:09:20	01:44:10:24 IS GRAVITY.
293	01:44:10:26	01:44:12:17 COOL MATTER
		IS MORE DENSE
294	01:44:12:19	01:44:15:02 AND THEREFORE HEAVIER
005	~ = ~	THAN WARM MATTER.
295	01:44:15:04	01:44:17:02 UNDER GRAVITY,
200	04.44.47.04	IT WILL SINK,
296	01:44:17:04	01:44:19:29 DISPLACING THE WARMER
297	01:44:20:01	MATERIAL BENEATH. 01:44:21:29 IT MAY SEEM SURPRISING
297 298	01:44:20:01	01:44:21:29 IT MAY SEEM SURPRISING 01:44:25:14 THAT ROCK SHOULD ACT LIKE
230	01.74.22.01	A VISCOUS LIQUID AND FLOW,

299	01:44:25:16	01:44:28:13 EVEN ON THE MOST
		SLOW-MOVING TIME SCALE.
300	01:44:28:15	01:44:31:14 AND YET, THIS IS PRECISELY WHAT HAPPENS
301	01:44:31:16	01:44:33:29 IN THE EARTH'S MANTLE.
302	01:44:34:01	01:44:36:13 OK, WE CAN USE
		SILLY PUTTY
303	01:44:36:15	01:44:38:13 AS AN ANALOGY FOR ROCKS,
304		01:44:40:28 PARTICULARLY IF
001	0111100110	WE'RE INTERESTED TO SEE
305	01:44:41:00	01:44:42:28 THE EFFECTS OF THE RATE
306	01:44:43:00	01:44:44:28 OF DISTORTING
000	01.44.40.00	OR STRAINING THE ROCK.
307	01:44:45:00	01:44:46:27 I CAN GIVE YOU
507	01.44.45.00	SEVERAL EXAMPLES.
308	01:44:46:29	01:44:49:28 I'VE GOT THREE
300	01.44.40.29	DIFFERENT PILES HERE
200	01.11.50.00	01:44:52:19 OF THE EXACT
309	01:44:50:00	
040	04-44-50-04	SAME MATERIAL.
310		01:44:54:01 UM, IN ONE CASE,
311	01:44:54:03	
040		THE SILLY PUTTY,
312	01:44:56:20	01:45:00:04 AND IF I APPLY A FAST RATE
		OF DEFORMATION TO IT,
313	01:45:00:06	01:45:01:20 WE CAN MAKE IT FRACTURE.
314	01:45:01:22	01:45:03:21 THIS MIGHT BE
		A GOOD ANALOGY
315	01:45:03:23	01:45:06:07 FOR WHAT WOULD HAPPEN
		NEAR THE EARTH'S SURFACE
316		
317	01:45:07:24	01:45:09:21 AND IF WE
		DEFORM THEM QUICKLY,
318	01:45:09:23	01:45:11:21 THEY WOULD FRACTURE
		LIKE THAT.
319	01:45:11:23	01:45:13:21 WE COULD TAKE
		THE SAME MATERIAL.
320	01:45:13:23	01:45:15:20 I COULD
		APPLY STRESS TO IT.
321	01:45:15:22	01:45:18:07 IF I DO IT
		AT A SLOWER RATE
322	01:45:18:09	01:45:20:07 I HAVE A SLOWER
		STRAIN RATE
323	01:45:20:09	01:45:22:21 THEN WE SEE THAT
		MY MATERIAL WILL FLOW
324	01:45:22:23	01:45:24:02 INSTEAD OF FRACTURE.
325	01:45:24:04	01:45:26:03 THIS MIGHT BE
0_0	0	A GOOD ANALOGY
326	01:45:26:05	01:45:28:02 TO WHAT WOULD HAPPEN
020	01.10.20.00	AT DEPTH,
327	01:45:28:04	01:45:29:18 WHERE ROCKS ARE HOTTER
328	01:45:29:20	01:45:31:18 AND DEFORMING
020	01.70.20.20	AT SLOW, LONG-TERM RATES
329	01:45:31:20	01:45:34:02 AND WE CAN GET FOLDS
525	51.75.51.20	AND THINGS LIKE THAT.
330	01:45:34:04	01:45:37:16 WE CAN EVEN GO
000	01.40.04.04	TO A MORE EXTREME CASE.

331	01:45:37:18	01:45:39:17 WE'LL TAKE
		THE SAME MATERIAL,
332	01:45:39:19	01:45:44:03 AND I CAN JUST PLACE IT
333	01:45:44:05	ON MY BLOCK RIGHT HERE. 01:45:45:17 WE'LL ESSENTIALLY
000	01.40.44.00	LET GRAVITY
334	01:45:45:19	01:45:48:02 BE THE ONLY, UH,
		STRESS OPERATING
335	01:45:48:04	01:45:50:15 ON THAT, UH,
336	01:45:50:17	SILLY PUTTY.
337	01:45:52:02	01:45:52:00 WE'LL SEE WITH TIME 01:45:53:29 THAT THE ROCK
	00.0	WILL STILL FLOW,
338	01:45:54:01	01:45:55:28 ALTHOUGH AT A MUCH
		SLOWER RATE
339	01:45:56:00	01:45:58:18 THAN WE SAW IN THE PREVIOUS EXAMPLE.
340	01:45:58:20	01:46:00:04 IN THE SAME WAY,
341	01:46:00:06	01:46:02:03 MANTLE ROCKS CAN DEFORM
•••	0	PLASTICALLY
342	01:46:02:05	01:46:04:03 BECAUSE OF THEIR
0.40	04-40-04-05	
343	01:46:04:05	01:46:07:18 WHEN STRESSED OVER VERY LONG TIME PERIODS.
344	01:46:10:16	01:46:13:13 IT IS THE ABILITY
-		OF ROCK TO FLOW
345	01:46:13:15	01:46:16:13 THAT, IN PART, ALLOWS
346	01:46:16:15	THE CONVECTION PROCESS 01:46:18:12 TO TAKE PLACE
340	01.40.10.15	INSIDE THE EARTH.
347	01:46:18:14	01:46:20:13 THAT STILL
		DOES NOT EXPLAIN
348	01:46:20:15	01:46:23:23 WHY CONVECTION OCCURS
349	01:46:23:25	<i>IN THE FIRST PLACE.</i> 01:46:26:07 THE REASON THAT
349	01.40.23.25	THE EARTH'S MANTLE CONVECTS
350	01:46:26:09	01:46:28:23 IS THAT FIRST THERE IS
		STILL PRIMARY HEAT
351	01:46:28:25	01:46:31:08 LEFT FROM THE FORMATION
352	01:46:31:10	OF THE EARTH, 01:46:34:07 AND THERE IS HEAT BEING
552	01.40.51.10	GENERATED IN THE EARTH
353	01:46:34:09	01:46:37:09 BY THE RADIOACTIVE DECAY
		OF A NUMBER OF ELEMENTS,
354	01:46:37:11	01:46:39:09 PRIMARILY URANIUM,
355	01:46:39:11	THORIUM, AND POTASSIUM. 01:46:42:08 THIS HEAT WITHIN
000	01.40.00.11	THE INTERIOR OF THE EARTH
356	01:46:42:10	01:46:44:07 WANTS TO ESCAPE
		AND FLOW OUT,
357	01:46:44:09	01:46:47:22 AND THE MOST EFFECTIVE
358	01:46:47:24	WAY FOR IT TO FLOW OUT 01:46:49:07 IS BY CONVECTING
359	01:46:49:09	01:46:53:13 JUST AS A POT OF BOILING
		WATER WOULD CONVECT.
360	01:46:53:15	01:46:55:26 THERE ARE

		A GREAT MANY QUESTIONS
361	01:46:55:28	
	<u> </u>	THE CONVECTION PROCESS.
362	01:46:57:12	
		FUNDAMENTAL OF THESE
363	01:46:59:29	
		IN PLATE MOTION.
364	01:47:02:28 01:47:04:14	01:47:04:12 ACCORDING TO ONE THEORY,
365	01:47:04:14	01:47:04:12 ACCORDING TO ONE THEORY, 01:47:05:26 PLATES ARE PUSHED APART 01:47:08:10 AS THE HOT ROCK
366	01:47:05:28	
		BENEATH THEM
367		01:47:09:25 CONVECTS UPWARD.
368	01:47:09:27	01:47:12:03 ANOTHER VIEW SUGGESTS
		THAT UPWARD CONVECTION
369	01:47:12:05	
		THE MID-OCEAN RIDGES.
370	01:47:14:13	
		FROM THE RIDGES
371	01:47:16:29	01:47:19:27 BY A COMBINATION
		OF GRAVITY AND DRAG
372	01:47:19:29	01:47:22:06 FROM THE CONVECTION
		CURRENTS THEMSELVES.
373		
374	01:47:23:28	
		A THIRD POSSIBILITY
375	01:47:26:13	
		ARE LITERALLY
376	01:47:28:13	
		INTO THE EARTH.
377	01:47:31:24	01:47:33:21 THERE ARE THOSE
		WHO BELIEVE
378	01:47:33:23	01:47:35:06 THAT BECAUSE
		THE LITHOSPHERIC PLATES,
379	01:47:35:08	01:47:37:21 WHERE THEY DESCEND
		IN THE TRENCHES,
380		
381	01:47:39:10	01:47:40:23 THAN THEATERIAL
		THEY DISPLACE,
382	01:47:40:25	01:47:43:22 THAT, IN FACT, LIKE
		THE COVERS FALLING OFF
383	01:47:43:24	01:47:45:22 THE EDGE OF THE BED,
384	01:47:45:24	01:47:47:22 THEY ARE BEING
		PULLED DOWN.
385	01:47:47:24	01:47:50:07 SO, PLATE PUSH
		AT THE RIDGE
386	01:47:50:09	01:47:52:07 BECAUSE OF HOT,
		RISING MATERIAL
387	01:47:52:09	01:47:53:22 SLIDING OFF THE RIDGE
388	01:47:53:24	01:47:59:23 AND TRENCH PULL ARE ALL
_		ASPECTS OF THE PROCESS.
389	01:47:59:25	01:48:01:24 WHAT WE KNOW FOR CERTAIN
390	01:48:01:26	01:48:03:23 IS THAT
		THE LITHOSPHERIC MOTIONS
391	01:48:03:25	01:48:06:25 ARE AS DESCRIBED
		IN ALL THOSE MODELS,
392	01:48:06:27	01:48:11:14 BUT NONE OF THEM

		IS A PARAMOUNT ARGUMENT		
393	01:48:11:16	01:48:15:02 OR MODEL FOR EXPLAINING		
204	04.40.45.04			
394	01:48:15:04	01:48:19:03 OF ACTUAL, UH, PLATE MOTIVATION		
395	01:48:19:05			
395 396	01:48:20:21			
396 397	01:48:22:07	01:48:25:04 THAT BECAUSE THE PLATES		
391	01.40.22.07	THAT HAVE TRENCHES,		
398	01:48:25:06	01:48:27:04 THAT ARE MOVING		
	0	DOWN TRENCHES,		
399	01:48:27:06	01:48:28:18 ARE GOING FAIRLY FAST		
400	01:48:28:20	01:48:30:19 10, 12 CENTIMETERS		
		A YEAR		
401	01:48:30:21	01:48:33:18 WHEREAS THOSE THAT ARE		
		SIMPLY MOVING AWAY		
		FROM RIDGES		
402	01:48:33:20	01:48:35:20 THAT ARE NOT		
	~	TIED OR HOOKED		
403	01:48:35:22			
404	01:48:37:07	01:48:40:05 ARE ONLY GOING A FEW		
405	04 40 40 07			
405	01:48:40:07	01:48:42:19 THAT THERE IS		
400	04 40 40 04	AN IMPORTANT TRENCH PULL.		
406	01:48:42:21			
407	01.40.44.04	IT'S ALSO POSSIBLE		
407	01:48:44:21	01:48:47:19 THERE IS A SMALL, AT LEAST, PLUME DRIVE		
408	01:48:47:21	01:48:50:09 OR RISING		
400	01.40.47.21	ASTHENOSPHERE COLUMN		
409	01:48:50:11	01:48:53:09 WHICH CAUSES A		
405	01.40.00.11	THE PLATES TO MOVE AWAY		
410	01:48:53:11	01:48:55:28 FROM THE RIDGE CRESTS		
		AS WELL.		
411	01:48:56:00	01:48:58:29 THE DEPTH AT WHICH		
		MANTLE CONVECTION OCCURS		
412	01:48:59:01	01:49:00:28 IS ANOTHER		
		CONTROVERSIAL ISSUE		
413	01:49:01:00	01:49:02:24 WITHIN THE GEOLOGIC		
		COMMUNITY.		
414	01:49:02:26	01:49:04:23 A SINGLE CONVECTION CELL		
415	01:49:04:25	01:49:08:06 EXTENDING THROUGHOUT PART		
		OR ALL OF THE MANTLE		
416	01:49:08:08	01:49:09:22 WAS FIRST PROPOSED		
417	01:49:09:24	01:49:12:21 AS PART OF THE SEA FLOOR		
		SPREADING HYPOTHESIS.		
418	01:49:14:23	01:49:16:08 MOST CURRENT MODELS,		
410	01:49:16:10	HOWEVER, 01:49:18:08 USE A TWO-TIERED APPROACH		
419 420	01:49:18:10	01:49:21:08 KNOWN AS THE BOUNDARY LAYER		
420	01.49.10.10	THEORY OF CONVECTION.		
421	01:49:21:10	01:49:22:22 ACCORDING TO THIS THEORY,		
421	01:49:22:24	01:49:25:21 ONE SET OF CELLS		
766	J1.7J.22.27	IN THE UPPER MANTLE		
423	01:49:25:23	01:49:29:07 IS DRIVEN BY ANOTHER SET		
		IN THE LOWER MANTLE.		

424	01:49:29:09	01:49:31:28 ALTHOUGH THE ISSUE
		OF MANTLE CONVECTION
425	01:49:32:00	01:49:33:20 IS STILL UNRESOLVED,
426	01:49:33:22	01:49:36:21 EVIDENCE FROM SEISMIC STUDIES
120	01.10.00.22	OF THE EARTH'S INTERIOR
427	01:49:36:23	
		A TWO-TIERED PROCESS.
428	01:49:39:24	01:49:43:05 I THINK THE
120	01.10.00.21	MANTLE IS SPLIT
		INTO TWO LAYERS
429	01:49:43:07	01:49:45:05 THAT WE CALL
		THE UPPER MANTLE
430	01:49:45:07	-
430	01.49.45.07	
		LOWER MANTLE.
431	01:49:46:21	01:49:48:10 THE EVIDENCE
		FOR THIS
432	01:49:48:12	01:49:50:17 IS THE PLATES
402	01.40.40.12	THAT SUBDUCT
433	01:49:50:19	
		OF FIRE
434	01:49:52:03	01:49:53:16 AROUND
	01110102100	THE PACIFIC OCEAN
405	04 40 50 40	
435	01:49:53:18	01:49:54:29 AND GENERATE
		MOST EARTHQUAKES.
436	01:49:55:01	01:49:56:29 WE CAN TRACE
		THESE EARTHQUAKES
437	01:49:57:01	01:49:59:14 DOWN TO ABOUT 700
437	01.49.57.01	
		KILOMETERS DEPTH,
438	01:49:59:16	01:50:00:29 THEN THE EARTHQUAKES
		STOP.
439	01:50:01:01	01:50:03:14 WE CAN ALSO USE
400	01.00.01.01	
		SEISMIC IMAGES
440	01:50:03:16	01:50:06:00 TO FIND OUT WHERE
		THESE SLABS ARE,
441	01:50:06:02	01:50:08:14 AND THE SLABS
	01.00.00.02	THEMSELVES
		APPEAR TO STOP
442	01:50:08:16	01:50:10:00 AT 700 KILOMETERS.
443	01:50:10:02	01:50:12:14 BELOW THAT, WE HAVE
		THE LOWER MANTLE,
444	01:50:12:16	01:50:13:29 WHICH IS ALSO
444	01.30.12.10	
		CONVECTING,
445	01:50:14:01	01:50:15:29 AND TO SOME EXTENT
		INFLUENCING
440	04 50 40 04	CONVECTION
446	01:50:16:01	CONVECTION 01:50:17:14 IN THE SHALLOW
446	01:50:16:01	CONVECTION
		CONVECTION 01:50:17:14 IN THE SHALLOW MANTLE,
446 447	01:50:16:01 01:50:17:16	CONVECTION 01:50:17:14 IN THE SHALLOW MANTLE, 01:50:20:13 BUT IT PROBABLY HAS
447	01:50:17:16	CONVECTION 01:50:17:14 IN THE SHALLOW MANTLE, 01:50:20:13 BUT IT PROBABLY HAS A HIGHER VISCOSITY
		CONVECTION 01:50:17:14 IN THE SHALLOW MANTLE, 01:50:20:13 BUT IT PROBABLY HAS A HIGHER VISCOSITY 01:50:22:00 AND A HIGHER
447	01:50:17:16	CONVECTION 01:50:17:14 IN THE SHALLOW MANTLE, 01:50:20:13 BUT IT PROBABLY HAS A HIGHER VISCOSITY 01:50:22:00 AND A HIGHER DENSITY.
447	01:50:17:16	CONVECTION 01:50:17:14 IN THE SHALLOW MANTLE, 01:50:20:13 BUT IT PROBABLY HAS A HIGHER VISCOSITY 01:50:22:00 AND A HIGHER
447 448	01:50:17:16 01:50:20:15	CONVECTION 01:50:17:14 IN THE SHALLOW MANTLE, 01:50:20:13 BUT IT PROBABLY HAS A HIGHER VISCOSITY 01:50:22:00 AND A HIGHER DENSITY. 01:50:23:14 IT'S LIKELY
447 448 449	01:50:17:16 01:50:20:15 01:50:22:02	CONVECTION 01:50:17:14 IN THE SHALLOW MANTLE, 01:50:20:13 BUT IT PROBABLY HAS A HIGHER VISCOSITY 01:50:22:00 AND A HIGHER DENSITY. 01:50:23:14 IT'S LIKELY THAT THE SLABS
447 448	01:50:17:16 01:50:20:15	CONVECTION 01:50:17:14 IN THE SHALLOW MANTLE, 01:50:20:13 BUT IT PROBABLY HAS A HIGHER VISCOSITY 01:50:22:00 AND A HIGHER DENSITY. 01:50:23:14 IT'S LIKELY THAT THE SLABS 01:50:25:15 CANNOT SINK INTO
447 448 449 450	01:50:17:16 01:50:20:15 01:50:22:02 01:50:23:16	CONVECTION 01:50:17:14 IN THE SHALLOW MANTLE, 01:50:20:13 BUT IT PROBABLY HAS A HIGHER VISCOSITY 01:50:22:00 AND A HIGHER DENSITY. 01:50:23:14 IT'S LIKELY THAT THE SLABS 01:50:25:15 CANNOT SINK INTO THE LOWER MANTLE
447 448 449	01:50:17:16 01:50:20:15 01:50:22:02	CONVECTION 01:50:17:14 IN THE SHALLOW MANTLE, 01:50:20:13 BUT IT PROBABLY HAS A HIGHER VISCOSITY 01:50:22:00 AND A HIGHER DENSITY. 01:50:23:14 IT'S LIKELY THAT THE SLABS 01:50:25:15 CANNOT SINK INTO THE LOWER MANTLE

		AT THE 700 KILOMETER
152	01:50:28:16	BOUNDARY, 01:50:30:29 WHICH IS
452	01.30.20.10	A SHARP SEISMIC
		DISCONTINUITY.
453	01:50:31:01	01:50:33:13 SO IN MY VIEW,
4 - 4	04.50.00.45	WE HAVE TWO LAYERS.
454	01:50:33:15	01:50:36:15 THE UPPER MANTLE PROVIDES MID-OCEAN
		RIDGE BASALTS.
455	01:50:36:17	01:50:39:14 THEN AS THE
		LITHOSPHERE COOLS,
456	01:50:39:16	
457	01:50:41:02	01:50:43:14 TO THE BOTTOM OF THE LOWER MANTLE,
458	01:50:43:16	01:50:45:14 THEN EVENTUALLY
400	01.00.40.10	HEATS UP AGAIN
459	01:50:45:16	01:50:47:14 AND COMES UP
		TO THE SURFACE.
460	01:50:47:16	01:50:49:28 THE LOWER MANTLE
		IS CONVECTING VERY SLOWLY,
461	01:50:50:00	01:50:51:14 BUT BECAUSE IT'S
		CONVECTING SLOWLY,
462	01:50:51:16	01:50:53:13 THE PARTS
100		OF THE LOWER MANTLE
463	01:50:53:15	01:50:55:00 THAT ARE PARTICULARLY HOT
464	01:50:55:02	01:50:56:15 STAY HOT
101	01100100102	A LONG TIME
465	01:50:56:17	01:50:58:27 AND HEAT UP
		THE UPPER MANTLE.
466	01:50:58:29	01:51:00:12 I THINK THE LOWER MANTLE
467	01:51:00:14	01:51:01:27 IS DEFINITELY
107	01.01.00.11	INFLUENCING
		CONVECTION
	01:51:01:29	
469	01:51:03:14	01:51:05:12 WHERE THERE'S HOT,
470	01:51:05:14	UPWELLING MATERIAL, 01:51:08:11 BUT I DON'T THINK
470	01.01.00.14	MATERIAL IS COMING
471	01:51:08:13	01:51:09:26 DIRECTLY FROM
		THE LOWER MANTLE
472	01:51:09:28	01:51:11:11 INTO THE
473	01:51:11:13	UPPER MANTLE, 01:51:13:11 NOR IS UPPER
475	01.51.11.15	MANTLE MATERIAL
474	01:51:13:13	01:51:15:12 SINKING INTO
		THE LOWER MANTLE.
475	01:51:15:14	01:51:17:28 WHETHER THERE IS
476	01:51:18:00	BOUNDARY LAYER CONVECTION 01:51:19:12 IN THE MANTLE OR NOT,
	01:51:19:14	01:51:21:12 THERE'S ANOTHER KIND
		OF CONVECTION
478	01:51:21:14	01:51:23:26 THAT OCCURS

		IN THE OUTER PORTION
479	01:51:23:28	01:51:25:11 OF THE EARTH'S CORE.
480	01:51:25:13	01:51:27:28 AS WE CROSS THE CORE
		MANTLE BOUNDARY,
481	01:51:28:00	01:51:29:28 THERE'S A VERY
		LOW-VISCOSITY FLUID
482	01:51:30:00	01:51:31:13 MOLTEN IRON CORE.
483	01:51:31:15	01:51:32:28 THIS IS CONVECTING
		VERY RAPIDLY,
484	01:51:33:00	01:51:34:28 FORMING THE EARTH'S
		MAGNETIC FIELD.
485	01:51:35:00	01:51:37:12 BASICALLY, TWO
		PARTS OF THE EARTH
100		ARE CONVECTING.
486	01:51:37:14	01:51:38:26 THE MANTLE HAS
407	04.54.00.00	A SLUGGISH,
487	01:51:38:28	01:51:40:12 HIGH-VISCOSITY
488	01:51:40:14	FLUID, 01:51:42:12 LIKE TAR THAT'S
400	01.51.40.14	TRYING TO CONVECT
489	01:51:42:14	
490	01:51:44:00	
400	01.01.44.00	THE CORE ITSELF
491	01:51:45:15	01:51:48:04 HAS MORE THE
101	01.01.10.10	VISCOSITY OF WATER.
492	01:51:48:06	01:51:49:17 IT'S CONVECTING
	0.10110.00	VERY RAPIDLY.
493	01:51:49:19	01:51:52:05 SO THERE'S TWO
		SCALES OF CONVECTION
494	01:51:52:07	01:51:53:18 AND TWO KINDS OF
		CONVECTION.
495	01:51:55:13	01:51:58:10 CURRENT MEASUREMENTS
		OF EARTH'S SURFACE FROM SPACE
496	01:51:58:12	01:51:59:25 HAVE PROVIDED
		ADDITIONAL EVIDENCE
497	01:51:59:27	01:52:02:28 THAT CONVECTION IS OCCURRING
400	04.50.04.07	WITHIN THE PLANET.
498	01:52:04:07	01:52:05:20 INTERESTINGLY
499	01:52:05:22	ENOUGH, 01:52:09:13 CONVECTION
499	01.52.05.22	CHANGES THE SHAPE
		OF THE EARTH.
500	01:52:09:15	
000	01.02.00.10	AT THE EARTH
		FROM A SATELLITE
501	01:52:12:27	
502	01:52:14:13	01:52:16:11 WITH VERY DETAILED
		RADAR TECHNIQUES,
503	01:52:16:13	01:52:17:28 WE FIND OUT
504	01:52:18:00	01:52:20:26 THE EARTH ISN'T
		A SMOOTH SPHERE
		AT ALL.
505	01:52:20:28	01:52:23:12 EVEN IF WE GET RID
		OF THE MOUNTAINS
506	01:52:23:14	
507	01:52:24:16	01:52:26:11 WE FIND THAT

500	04.50.00.40	
508	01:52:26:13	01:52:27:26 IS A VERY BUMPY
509	01:52:27:28	OBJECT. 01:52:29:10 THE UPWELLING
309	01.32.27.20	CONVECTION CURRENTS
510	01:52:29:12	01:52:31:10 TEND TO MAKE BUMPS
		AND SWELLS
511	01:52:31:12	01:52:32:26 IN THE EARTH'S
		SURFACE,
512	01:52:32:28	01:52:34:12 AND DOWNWELLING
- 10		COLD CURRENTS
513	01:52:34:14	01:52:35:27 TEND TO MAKE DEPRESSIONS
514	01:52:35:29	
515	01:52:37:13	01:52:39:27 SO BY LOOKING AT
010	01102.01110	THE EARTH'S SHAPE,
516	01:52:39:29	01:52:43:06 WE'RE ABLE TO MAP
		THE CONVECTION
		PATTERNS.
517	01:52:45:03	01:52:46:24 IN THE LATE 1960s, 01:52:49:09 IT WAS SUGGESTED
518	01:52:46:26	01:52:49:09 IT WAS SUGGESTED THAT THERE ARE PLACES
519	01:52:49:11	01:52:51:08 BENEATH THE MIDDLE
519	01.52.49.11	OF THE PLATES
520	01:52:51:10	01:52:54:06 WHERE A SPECIAL KIND
		OF CONVECTION TAKES PLACE.
521	01:52:55:20	01:52:59:02 COMPARATIVELY NARROW COLUMNS
		OF HOT MANTLE ROCK
522	01:52:59:04	01:53:00:16 RISE FROM BELOW
523	01:53:00:18	01:53:02:02 AND SPREAD RADIALLY OUTWARD
524	01:53:02:04	01:53:05:00 AS THEY REACH
021	01.00.02.01	THE LITHOSPHERE.
525	01:53:05:02	01:53:07:22 THESE ARE KNOWN
		AS MANTLE PLUMES.
526	01:53:07:24	01:53:10:07 THIS KIND OF CIRCULATION
		CAN BE SEEN
527	01:53:10:09	01:53:12:06 IN OTHER,
528	01:53:12:08	MORE FAMILIAR PHENOMENA 01:53:14:07 THAT OCCUR
520	01.55.12.06	IN OUR ATMOSPHERE.
529	01:53:14:09	01:53:16:23 WHEN THUNDERHEAD CLOUDS
		FORM, FOR EXAMPLE,
530	01:53:16:25	01:53:18:22 A SIMILAR TYPE
		OF PLUME CONVECTION
531	01:53:18:24	01:53:20:08 IS TAKING PLACE,
532	01:53:20:10	01:53:22:21 BUT IN AN ACCELERATED
533	01:53:22:23	MANNER. 01:53:26:00 EVIDENCE OF MANTLE PLUMES
555	01.33.22.23	HAS BEEN FOUND
534	01:53:26:02	01:53:28:05 IN THE FORM OF HOT SPOTS
535	01:53:28:07	01:53:30:05 REGIONS OF CONCENTRATED
		VOLCANIC ACTIVITY
536	01:53:30:07	01:53:32:19 WHICH ARE ROUGHLY
507	04-50-00-40	CIRCULAR IN SHAPE.
537	01:53:36:18	01:53:39:01 WHEN YOU LOOK

E 2 0	01.52.20.02	
538 539	01:53:39:03 01:53:40:18	01:53:40:16 OF THE GENERAL SEA FLOOR, 01:53:42:01 OCCASIONALLY,
559	01.33.40.10	YOU FIND A SEAMOUNT.
540	01:53:42:03	01:53:43:16 THEY'LL BE LITTLE
0.10	01100112100	ROUND CONES.
541	01:53:43:18	01:53:45:15 THEY RANGE
		FROM SMALL TO HUGE.
542	01:53:45:17	01:53:47:02 HAWAII IS ONE.
543	01:53:47:04	01:53:49:16 WE DON'T KNOW
		ABOUT ALL OF THEM,
544	01:53:49:18	01:53:52:01 BUT MANY OF THEM
545	01:53:52:03	SEEM TO BE RELATED 01:53:53:21 TO HOT SPOTS.
545 546	01:53:52:03	01:53:55:20 A HOT SPOT VOLCANISM
040	01.00.00.20	HAPPENS
547	01:53:55:22	01:53:58:05 WHEN THERE'S A PLACE
		DOWN IN THE MANTLE
548	01:53:58:07	01:54:00:20 THAT FOR SOME REASON
		PRODUCES EXTRA LAVA,
549	01:54:00:22	01:54:03:20 SO MUCH EXTRA
		THAT IT BUBBLES UP
550	01:54:03:22	01:54:05:04 THROUGH THE PLATE
551	01:54:05:06	01:54:07:21 AND BUILDS A SEAMOUNT ON TOP.
552	01:54:07:23	01:54:10:06 OFTEN IT BUILDS
552	01.54.07.25	AN ISLAND LIKE HAWAII
553	01:54:10:08	01:54:12:19 AND THE CHAIN OF ISLANDS
		STRUNG BEHIND HAWAII.
554	01:54:12:21	01:54:14:04 THE REASON
		THEY'RE INTERESTING
555	01:54:14:06	01:54:17:04 IS THAT THE HOT SPOTS
556	01.54.17.00	SEEM TO BE STILL,
000	01:54:17:06	01:54:19:18 OR NEARLY STILL, DOWN IN THE MANTLE,
557	01:54:19:20	01:54:22:03 SO WHEN THE PLATE
001	01.01.10.20	MOVES OVER IT,
558	01:54:22:05	01:54:24:19 IT KEEPS MAKING
		NEW VOLCANOES IN A LINE.
559	01:54:24:21	01:54:28:14 SO RIGHT NOW,
		THE BIG ISLAND OF
500	04 54 00 40	HAWAII IS BEING BUILT
560	01:54:28:16	01:54:31:19 THE ISLANDS UP THE CHAIN GET OLDER.
561	01:54:31:21	01:54:33:03 IN FACT,
501	01.54.51.21	THERE'S A CHAIN
562	01:54:33:05	01:54:35:03 THAT STRETCHES
		ACROSS THE SEA FLOOR
563	01:54:35:05	01:54:37:18 UP TO THE ALEUTIANS,
		WHICH ARE OLDER,
564	01:54:37:20	01:54:40:19 SHOWING US THE MOTION
505	04.54.40.04	
565	01:54:40:21	01:54:43:09 OVER THAT HAWAIIAN HOT SPOT.
566	01:54:43:11	01:54:46:23 AS THE ISLANDS OF HAWAII
000	01.07.70.11	AGE AND WEATHER AWAY,

567	01:54:46:25				
568	01:54:48:12	01:54:51:14 FLAT-TOPPED SUBMERGED			
		SEAMOUNTS OR GUYOTS.			
569	01:54:51:16	01:54:54:17 THOUSANDS OF SUCH SEAMOUNTS			
000	01101101110	DOT THE OCEAN FLOOR.			
570					
570	570 01:54:56:03 01:54:57:29 SOMETHING INTERESTING				
		ABOUT OCEANIC ISLANDS			
571	01:54:58:01	01:55:00:05 IS THAT THEY			
		DON'T LAST LONG.			
572	01:55:00:07	01:55:02:06 THE EROSIVE POWER			
-		OF THE WAVES			
573	01:55:02:08	01:55:03:20 IS SO STRONG			
		01:55:06:19 THAT ANY ISLAND			
574	01:55:03:22				
		THAT ISN'T BEING			
		CONTINUALLY BUILT			
575	01:55:06:21	01:55:09:19 WILL BE ERODED AWAY			
		IN A FEW MILLION YEARS,			
576	01:55:09:21	01:55:11:18 PLANED RIGHT DOWN			
0.0	0.100100.21	TO WAVE FACE.			
577	01:55:14:08	01:55:16:21 AS PLATE MOVEMENT			
511	01.55.14.06				
		CARRIES THE ISLANDS			
578	01:55:16:23	01:55:19:20 AWAY FROM HOT SPOTS			
		AND MID-OCEAN RIDGES,			
579	01:55:19:22	01:55:23:04 THE UNDERLYING SEA FLOOR			
		COOLS AND SUBSIDES.			
580	01:55:24:29	01:55:27:26 IN LOWER LATITUDES,			
000	01.00.21.20	CORAL REEFS BUILD UP,			
E01	01-55-07-00	· · · · · · · · · · · · · · · · · · ·			
581	01:55:27:28				
		THE REMNANTS			
582	01:55:29:15	01:55:31:07 OF THE SINKING ISLANDS.			
583	01:55:31:09	01:55:34:06 SUCH CAPS ARE CALLED			
		CORAL ATOLLS.			
584	01:55:35:15	01:55:36:25 ULTIMATELY,			
		THE ATOLLS THEMSELVES			
585	01:55:36:27	01:55:38:26 MAY SINK FROM VIEW.			
	01:55:39:29	01:55:41:11 THE BIG ISLAND			
586	01.55.59.29				
		OF HAWAII			
587	01:55:41:13	01:55:43:12 IS BEING BUILT			
		RIGHT NOW.			
588	01:55:43:14	01:55:44:28 THERE'S NEW LAND			
		BEING ADDED			
589	01:55:45:00				
590	01:55:46:15	01:55:47:28 EVEN THE OTHER			
390	01.33.40.13	HAWAIIAN ISLANDS,			
504	04 55 40 00				
591	01:55:48:00	01:55:50:01 EVEN THOUGH THEY'RE			
		STILL ISLANDS,			
592	01:55:50:03	01:55:51:18 ARE PLANED AWAY.			
593	01:55:51:20	01:55:55:01 WHEN YOU DRIVE UP			
		ON A SHIP WITH A SONAR,			
594	01:55:55:03	01:55:56:16 YOU COME UP THE SIDE,			
595	01:55:56:18	01:55:58:16 AND THERE'S			
090	01.00.00.10				
500	04 55 50 40				
596	01:55:58:18	01:56:01:01 AND THEN THE ISLAND'S			
		THE LAST EROSIONAL REMNANT			
597	01:56:01:03	01:56:03:10 THAT HASN'T BEEN CHEWED			
		BY THE WAVES YET.			

500	04.50.00.40	
598	01:56:03:12	01:56:05:28 IF THE THEORY OF HAWAII'S
599	01:56:06:00	FORMATION IS CORRECT, 01:56:09:04 HAWAII WILL DRIFT OFF
299	01:56:06:00	THE HOT SPOT
600	01:56:09:06	01:56:10:19 IN A FEW MILLION YEARS
600 601	01:56:10:21	01:56:13:18 AS THE PACIFIC PLATE
001	01.50.10.21	CARRIES IT AWAY
602	01:56:13:20	01:56:15:01 IN A NORTHWESTERLY
002	01.30.13.20	DIRECTION.
603	01:56:15:03	01:56:17:08 THE MANTLE PLUME
000	01.00.10.00	WILL STAY WHERE IT IS
604	01:56:17:10	01:56:20:08 AND EVENTUALLY CREATE
001	01.00.11110	A NEW ISLAND OVER ITSELF.
605	01:56:20:10	01:56:23:08 INDEED, A YOUNG SUBMARINE
		VOLCANO DUBBED LOIHI
606	01:56:23:10	01:56:26:28 HAS BEEN DISCOVERED FORMING
		SOUTHWEST OF HAWAII.
607	01:56:27:00	01:56:30:14 IT RISES SOME 8,000 FEET
		FROM THE SEA FLOOR,
608	01:56:30:16	01:56:33:14 BUT HAS ANOTHER
		3,000 FEET TO GO
609	01:56:33:16	01:56:35:13 BEFORE IT
		BREAKS THE SURFACE
610	01:56:35:15	01:56:36:29 AND BECOMES A REAL ISLAND.
611	01:56:37:01	01:56:39:14 LOIHI SHOULD BUILD UP
		TO THE SURFACE
612	01:56:39:16	01:56:42:07 SOMETIME BETWEEN 19,000 01:56:44:28 AND 100,000 YEARS
613	01:56:42:09	01:56:44:28 AND 100,000 YEARS
		FROM NOW.
614	01:56:45:00	01:56:48:00 THE ENDURING MYSTERY
		IS WHY A MANTLE PLUME,
615	01:56:48:02	01:56:50:15 SUCH AS THE ONE
		UNDERLYING HAWAII,
616	01:56:50:17	01:56:52:29 SHOULD REMAIN
		IN THE SAME PLACE
617	01:56:53:01	01:56:56:00 FOR OVER 75 MILLION YEARS.
618	01:56:56:02	01:56:58:29 NOT ALL HOT SPOTS
040		OCCUR UNDER THE SEA FLOOR.
	01:56:59:01	01:57:00:16 THERE IS GOOD EVIDENCE
620	01:57:00:18	01:57:02:16 THAT THE AREA
004	04.57.00.40	UNDERNEATH YELLOWSTONE,
621	01:57:02:18	01:57:04:00 WHICH HAS
622	01:57:04:02	LONG BEEN FAMOUS 01:57:06:15 FOR ITS GEOTHERMAL
022	01.57.04.02	HOT SPRINGS AND GEYSERS,
623	01:57:06:17	01:57:08:19 IS OCCUPIED BY A HOT SPOT.
624	01:57:08:21	01:57:11:05 THIS HOT SPOT LIES
024	01.57.00.21	BENEATH THE INTERIOR
625	01:57:11:07	01:57:12:21 OF A CONTINENT,
626	01:57:12:23	01:57:15:25 AND WHILE IT ISN'T RESPONSIBLE
020	51.57.12.20	FOR ISLAND FORMATION,
627	01:57:15:27	01:57:17:10 IT CERTAINLY CONTRIBUTES
628	01:57:17:12	01:57:19:16 TO THE GEOTHERMAL ACTIVITY
		THERE.
629	01:57:22:24	01:57:24:07 PLATE TECTONICS
		IS A MODEL

630	01:57:24:09	01:57:26:21 OF THE WAY THE EARTH WORKS.
631	01:57:26:23	01:57:28:06 THE SIGNIFICANCE OF THIS THEORY
632	01:57:28:08	
633	01:57:30:24	
634	01:57:33:24	
635	01:57:35:24	01:57:37:23 MOUNTAIN BUILDING, SEA FLOOR SPREADING.
636	01:57:37:25	01:57:40:14 YET, CERTAIN QUESTIONS REMAIN.
637	01:57:40:16	
638	01:57:42:01	01:57:44:13 WE DON'T FULLY UNDERSTAND
000	01101112.01	THE MECHANISMS
639	01:57:44:15	
640	01:57:46:01	
040	01.07.40.01	THAT THERE ARE PLACES
641	01:57:48:01	01:57:49:15 WHERE THE GEOLOGIC
041	01.07.40.01	RELATIONSHIPS
642	01:57:49:17	
042	01.07.40.17	THE PLATE TECTONIC MODEL.
643	01:57:52:01	01:57:53:28 THE WESTERN MARGIN
045	01.57.52.01	OF NORTH AMERICA
644	01:57:54:00	01:57:56:12 BETWEEN THE PACIFIC
044	01.07.04.00	AND THE ROCKIES
645	01:57:56:14	
646	01:57:57:19	
040	01.57.57.19	QUESTIONS LIKE THESE
647	01:57:59:20	
648	01:58:01:04	01:58:03:02 INSTEAD, THEY PROPEL
040	01.36.01.04	
640	01.50.00.04	SCIENCE FORWARD, 01:58:05:17 FORCING SCIENTISTS
649	01:58:03:04	TO RE-EVALUATE
650	01:58:05:19	01:58:07:17 THE ASSUMPTIONS
050	01.56.05.19	OF EXISTING THEORIES.
651	01:58:07:19	01:58:09:02 NEARLY 100 YEARS AGO,
652	01:58:09:04	01:58:13:02 ALFRED WEGENER CHALLENGED
052	01.56.09.04	THE SCIENTIFIC ORTHODOXY
653	01:58:13:04	01:58:15:19 WITH HIS THEORY
055	01.56.15.04	OF CONTINENTAL DRIFT.
654	01:58:15:21	01:58:18:04 THAT CHALLENGE RESULTED
034	01.56.15.21	IN NOTHING LESS
655	01:58:18:06	01:58:21:03 THAN A REVOLUTION
000	01.30.10.00	IN THE EARTH SCIENCES.
656	01.50.22.10	01:58:26:07 CAPTIONING PERFORMED BY
656	01:58:23:10	
		THE NATIONAL CAPTIONING
657	01,50,00,00	
657	01:58:26:09	01:58:29:06 CAPTIONS COPYRIGHT 1992
050	04.50.05 40	
658	01:59:25:19	01:59:29:01 Annenberg Media
659 660	01:59:29:03	
660	01:59:34:08	01:59:35:22 For information

		about this	
661	01:59:35:24	01:59:38:10	and other Annenberg
		Media program	S
662	01:59:38:12	01:59:40:26	call 1-800-LEARNER
		and visit us at	
663	01:59:40:28	01:59:45:11	www.learner.org.