MODULE 28: SCHIZOPHRENIA: PHARMACOLOGICAL TREATMENT

AUGUSTINE

ST. ELIZABETH'S HOSPITAL

George Page (V/O):

Before the advent of modern

anti-psychotic

medications, most sufferers of schizophrenia were unable

to live or function

independently.

AUGUSTINE (off meds)

Dr. Bigelow (V/O):

Could you share with us something that's going on in your mind? How are you

feeling?

AUGUSTINE

Augustine (0/C):

I'm feeling okay. There's kind of a mantle on my mask.

All I have

is thoughts going across my

head of all sorts.

DR. BIGELOW

Dr. Bigelow (O/C):

Do they make sense?

Augustine (V/O):

No.

DR. BIGELOW

Dr. Bigelow (0/C):

Augustine, is there anything

that you'd

like to tell us or ask us?

Augustine (V/O):

No.

AUGUSTINE

Dr. Bigelow (V/O):

You're about getting ready to change your medications aren't

you?

AUGUSTINE

Augustine (O/C):

Yes.

Dr. Bigelow (V/O):

When's that...

AUGUSTINE

Augustine (0/C):

I'm looking forward to

that.

AUGUSTINE

DR. SCHEIBEL UCLA MEDICAL CENTER

BRAIN VISUAL

Dr. Bigelow (V/O):
You're looking forward to
that?

<u>Auqustine (O/C):</u> Yes.

Dr. Scheibel (0/C): I can remember when I was a resident in psychiatry, we had nothing specific with which to treat our patients, except perhaps shock treatment which seldom helped, or cool baths. We had to tie them into a bathtub under a canvas restraint and it was a pretty awful situation. I remember that I went away for a year of fellowship abroad, 1953 and 54, and when I returned, the new drug chlorpromazine, which we knew as Thorazine, had just been made available, and it was the difference between night and day. Suddenly, we had an agent, which while not curing the disease, made it possible for at least some of these patients to be reclaimed, to even live a half way normal life with their families and in some cases going out to work, so that the field changed enormously at that point.

George Page (V/O):
Anti-psychotic drugs alleviate the symptoms of schizophrenia by normalizing the chemistry of the brain. In the brain,

NEURAL NET

DR. BARCHUS
STANFORD MEDICAL SCHOOL

AUGUSTINE

FOUR WEEKS LATER

George Page (V/O):

the nerves never actually touch. They're separated by small gaps known as synapses. Chemicals released from one nerve ending attach to the surface of the next nerve ending causing the nerve to respond electrically. In the case of schizophrenia, there seems to be excessive activity at the synapses that use the neurotransmitter, dopamine. Anti-psychotic drugs reduce this activity.

Dr. Barchus (O/C):

Well, it was found relatively quickly that these neuroleptics all seemed to act on one particular type of neurotransmitter, the socalled dopamine system, nerve cells which use dopamine as a transmitter. And that they block the receptors for dopamine over here. So that led rise to a theory of schizophrenia that schizophrenia is a relative excess of dopamine. We don't know if it's a true excess, or just in some way or another, there's a balance and we're restoring it to normal by blocking the effects of dopamine.

George Page (V/O):
The effectiveness of antipsychotic drugs in
alleviating symptoms is shown
in Augustine's behavior after
four weeks on medication.

Augustine (O/C):

I wanted to become a patriarch, a doctor of the church, a world leader. Things of that sort.

.

AUGUSTINE (ON MEDS)

Dr. Kirch (V/O):
Fairly grand ideas.

Augustine (O/C):
Yeah. I don't have them anymore.

Dr. Kirch (V/O):
Back then did you really believe those things?
Were you really caught up in them?

Augustine (O/C):
I was caught up in them, but I didn't believe I could make it.

Dr. Kirch (V/O):
You didn't think you'd make
it?

<u>Augustine</u> (O/C): Right.

Dr. Kirch (V/O):
What do you think now? What do you think the future holds for you now?

Augustine (0/C): Work.

Dr. Kirch (V/O):
Work?

Augustine (0/C):

Dr. Scheibel (O/C):
Very recently, there
have been
other exciting, exciting
things
happening. Second and third
generations of drugs, rather

DR. SCHEIBEL

STEVE AND DR. BIGELOW

STEVE

Dr. Scheibel (O/C): different molecules, have become available. The exciting thing is they seem to have the capacity to help that 25 to 30 percent of patients who we never could touch before with the usual neuroleptic or psychotic type of drugs. These drugs seem to work in a slightly different way. They work on different molecules in the brain, we call them receptor systems, and it may well be that by changing the structure of the drug molecule that we're dealing with, we may gradually close in on most of these sick molecular components in the brains of schizophrenics and eventually we may be able to help all of our patients. But again, I must stress that this is amelioration and stabilization. It's not cure yet, and cure is what we want. In other words, we have to learn how to prevent.

<u>Dr. Bigelow (O/C):</u>
You're taking a research medication now, aren't you?

Steve (O/C):
Yes, it's very helpful to me.

Dr. Bigelow (V/O):
Well, that's good news.
What's it doing for you?

Steve (O/C):
Well, it clears up my mind for
thinking and I feel a little
healthier.

Dr. Bigelow (V/O):
Good.

SHOT OF DOCTORS

DR. BIGELOW

STEVE

SHOTS OF DOCTORS

Dr. Barchus (V/O):
One can imagine a day in the future, when we will have sub-typed the illness, both biochemically and behaviorally and will be able to treat the individual ideally with more specific medication and with a better long-term prognosis. That's sort of a dream that propels people like myself to continue our research.

Dr. Bigelow (V/O):
Steve, I see you moving your
lips as if you are saying
something. But I don't hear
anything.

Steve (0/C):
I'm not saying anything.

Dr. Bigelow (V/O):
Are you aware that you are
moving your mouth as if
you were speaking?

Steve (O/C): No I wasn't.

Dr. Bigelow (V/O):
You weren't. Is it possible
you were hearing things when
your mouth was moving?

Steve (V/O):

Dr. Bigelow (V/O): Thanks for coming in Steve.

MODULE 29: AUTISM

CHILDREN DISPLAYING AUTISM AUTISM NE CENTER BOSTON

George Page (V/O):
The developmental
disorder known as autism
was first described in
1943. It appears in about
5 out of every 10,000
births and
occurs more often in boys
than in girls. It is
found throughout the world
in families of all racial,
ethnic, and social
backgrounds.

AUTISM NE CENTER BOSTON

George Page (V/O): As recently as the 1970's, researchers believed that autism was environmentally and psychologically based. And that it was caused by parenting style, especially mother-child interactions. This longheld belief brought blame and humiliation to parents of autistic children. It affected the diagnosis of autism, as well as the intervention strategies used in educating and caring for autistic individuals.

DR. BAUMAN AND DR. KEMPLER

George Page (V/O):
Among the leading
investigators of autism
are Dr. Margaret Bauman,
Director of the Autism
Research Foundation in
Boston,
and her colleague, Dr.
Thomas Kempler. Their
team has been studying
brain tissue at autopsy

BRAIN SLIDES

BRAIN SLIDES

DR. BAUMAN

COMPARISON MICROSCOPE

DR. BAUMAN

George Page (V/O):
hoping to find clues to
the neurological
basis of the disorder.
They compare tissue from
people who suffered from
autism with tissue from
normal individuals. They
have found some remarkable
differences.

Dr. Bauman (O/C): Our research uses a technique called "whole brain serial section." and this is a very old technique . It's also a fairly expensive technique and not very glitzy. Basically what we do is we take an entire brain and we embed it in something called celloidin which firms it up and it has to sit there about 8-10 months, until it's hard enough for us to do something with. After which we section it in a very standardized protocol. And we can do this with an age and sex matched control as well so that all the material that we get is processed identically. We then take that material and we use a comparison microscope which is basically two microscopes next to each other connected by a bridge. And we can then take the same sections out of each brain a normal and an age matched autistic brain and we can look at these identical sections side by side

นโ

DR. BAUMAN

Dr. Bauman (V/O):
at the same field of
view, with the same
magnification and we
can compare. And I
think that's been extremely usef

because I think without that technique we would never have found what we found. The brain findings here are very subtle and they are not able to picked up by more standard methods of looking at neuropathology. while this is a old technique and an expensive technique, I think in this circumstance it is the only way that you can survey a brain when you don't know what you are looking for. We didn't have any idea of what we were looking for when we got started. And I think this is the only way that you can really survey a brain with any kind of comfort.

Dr. Bauman (O/C): By using the standardized technique, we have been able to identify two circuits within the brain, and by circuits we mean that the abnormalities are not site specific. That is to say that there are a number of sites which may be at different areas throughout the brain that are connected to each other and which talk back and forth to each other if you will.

## VISUAL OF BRAIN

DR. BAUMAN

Dr. Bauman (V/O): Those two circuits include the limbic system which is responsible for memory, learning, behavior, emotion, and the cerebellar circuit which was in some ways more of a surprise to us at that time. The abnormalities have been found using this whole brain serial section technique and the abnormalities consist of two different abnormalities actually. The limbic system looks like a developmentally more immature system. It's not brain damage. There isn't cell loss there. In fact, the cells are too many, too small. There are more neurons than we would expect to see and the ones that are there are too small. And it looks like the system of a much younger person...not only in terms of the patient's chronological age, but in terms of the rest of the brain itself. The cerebellar circuits look a little bit different in that there are a number of cell populations that are missing. We're not clear whether or not those cell populations arrived at their designated site and then later disappeared or whether they never arrived in the first place. But it's

AUTISTIC CHILDREN

DR. BAUMAN

Dr. Bauman (V/O):
the population that helps
us speculate about when
this might have occurred
in the prenatal period.
So in some ways they are
somewhat different but
they give us two pieces
of information
that I think are
helpful.

George Page (V/O):
Dr. Bauman's research
contradicts the theory that
autism is a psychological
disorder. Rather, it is
associated with
with brain malfunction.
This
may be traced to a lack of
normal neural growth and
development during the
prenatal period.

Dr. Bauman (O/C): This is not something that happens at birth. This is not something that happens because you were a bad mother. This is something that was preprogrammed sometime early in development sometime prior to the end of the second trimester. I don't think we are in a position at this point to say just when that happens or in fact what the cause is, but we can at least make some estimate about the timing.

COUNTRY CANADA: TEMPLE GRANDIN

George Page (V/O):
Growing up with autism
doesn't necessarily mean
that a person cannot
achieve a high level
of professional
competence. In fact, for
one person, it turned
into an advantage.
Meet Dr. Temple
Grandin, a professor of
animal sciences at Colorado
State University.

COUNTRY CANADA: DR. GRANDIN

Narrator on movie (O/C):
Dr. Grandin.

Dr. Grandin (O/C):
It's a real pleasure to be here today, and we'll start out...I mean I was very autistic and very messed up as a young child.

TEMPLE AS A CHILD

George Page (V/O): Temple Grandin's professional achievement would never have been predicted on the basis of her early childhood. She was three years old before she spoke her first words. She was emotionally withdrawn. Doctors recommended that she be institutionalized in a facility for the mentally disabled. But special attention from her parents and teachers enabled her to succeed in school.

TEMPLE GRANDIN

Temple (O/C): Well the first thing was being put into a really good educational program by age two and a half. I can't emphasize the importance enough of early intervention in autism. I had about 20,25 hours a week in a small classroom. I also had a nanny that spent many hours a day playing games with me. It's very important to keep autistic children engaged with the world because if you let them tune out they are just going to go deeper into autism and deeper into all the sensory problems.

COUNTRY CANADA: TEMPLE TALKING BEFORE STUDENTS

Temple (O/C): Here in Canada, the two biggest plants in Alberta that process about a half of all the feedlot cattle in Canada, they use systems I've designed. So when you go get a steak here in Canada, you've got a 50% probability it's been through one of my systems. And I don't think that's doing to badly for somebody they thought was mentally retarded and they wanted to send me away to an institution.

COUNTRY CANADA: TEMPLE TALKING BEFORE STUDENTS

George Page (V/O):
Unlike many autistics,
Dr. Grandin has
been able to overcome
the barriers to social
interaction. Her
progression from social
isolation to prominence
in her field has been
remarkable. It is due,
in part, to her autism
and the special way it
enables her to view the
world.

DR. GRANDIN

COUNTRY CANADA: TEMPLE WITH CATTLE

Temple (O/C):
I
think totally in
pictures. I don't have
any language based
thought. Well animals
also would think in
pictures. I think like
videotapes in my head.
And it's so easy for me
to imagine what it would
feel like to be a cow in
certain situations.

George Page (V/O): This special ability to think in pictures allows her to perceive the world as an animal would. special affinity for cattle gives her a humane approach for designing cattle facilities. The holding pens she designs have gentle curves, to take advantage of the cattle's natural tendency to circle, and also to obscure what lies ahead.

COUNTRY CANADA: TEMPLE WITH MANAGER

Temple (O/C):
...that the animals think they are going back to where they came from.
They are coming on around and they think they are going back to the corrals.

SQUEEZE MACHINE

George Page (V/O):
When feeling stressed,
Dr. Grandin takes
advantage of another
lesson she learned from
observing
cattle:
she calls
it her "squeeze machine."

DR. GRANDIN

Temple (O/C): Well when I got into puberty, I started having very intense anxiety attacks. It felt like a total state of stage fright all the time. once told a TV reporter it would be like first time you ever interviewed somebody really big and you were just so scared you just didn't know what to do. That's the way I felt all the time for absolutely no reason, and I was desperate for relief from this. Well, one day I watched cattle going through the squeeze chute at my aunt's ranch. And I noticed that some of the animals when they are put in the squeeze chute tended to relax. And so I thought, well I ought to try this. So I went and I tried it, and it would temporarily relieve the nervous attacks. Many autistic children

seek pressure. I've had parent after parent say to me: my child gets under the sofa cushion: my child gets under the mattress. Therapists will often use pressure, getting under mattresses, to help calm down and relax children with autism. So then after trying the cattle chute at the ranch I then built a cattle chute-like device that I could get into, that would apply pressure, where I could

control the amount
of pressure. At first, I
tended to just sort of
pull away from it, but
then gradually I learned
to tolerate more
pressure. When I was a
little child, I
couldn't stand
to be held because I just
got this engulfing, tidal
wave stimulation just

Temple (0/C):

coming over me.

George Page (V/O):
When Temple feels the need to relax, she crawls into her own version of a cattle chute, which she keeps in her study.

Temple (O/C):
I'll demonstrate to you how it works. You get in here like this. You put your head through here like this. And by working this control

SQUEEZE MACHINE: TEMPLE IN HER APARTMENT WITH SQUEEZE MACHINE

SQUEEZE MACHINE

SQUEEZE MACHINE
TEMPLE IN SQUEEZE MACHINE

I can let a little pressure off; I can put a little bit of pressure on. Now the things that bother cattle are the same things that upset a person with autism, high pitched noise. sudden jerky motion, With a hyperaroused nervous system, I'm just always constantly vigilant. Any little stimuli just sets the whole nervous system off. You know

COUNTRY CANADA: DR. GRANDIN

Temple (O/C):
being an autistic person
is sort of like being a
wild animal out in the
woods full of predators.
I'll stay in here
anywhere from fifteen
minutes to forty five
minutes. Sometimes I
fall asleep in here.

Dr. Grandin (O/C):
A lot of things that people consider important, I don't consider important.
People get concerned about having you know a gold plated bathroom, having a corner office.
That doesn't mean anything. You know I'd like to say when I get to the top of the stairway to heaven, that I did something of value for society.

George Page (V/O):
Temple Grandin is
certainly an
extraordinary example of

COUNTRY CANADA

DR. BAUMAN

a person able to overcome the effects of autism. But what does the future hold for the countless others stricken by this disorder?

Dr. Bauman (O/C):
There are many issues
that remain to be
investigated. I think
the anatomy has allowed
us to say, yes, there is
something definitely
wrong
with these brains. We
now know where that is

Dr. Bauman (0/C): and we're comfortable that those findings are reasonably consistent from case to case. But that's not going to help the kids a whole lot. We need to be able to take it to the next step to find out what it is about these brains that is abnormal other than the structure. And in all probability, there is a neurochemical profile that goes along with this abnormal structure. And I think that, in mind at least, is the next step: that we need to look at the brain tissue from a neurochemical perspective to try to find out what's abnormal about the chemical profile here. If we can pinpoint that, and it may be more than one thing. I don't know that it's necessarily going to be

MAY-12-98 TUE 1:35 PM EXPERIMENTAL PSYCH CSU FAX NO. 970 491 2265

. . . .

one neurochemical substance, and it may be several, or it may be different proportions in different people. But I think in all likelihood, there's going to be some abnormality that goes along with this abnormal structure. If we can do that, then we can think about some more specific treatments for these children.

AUTISTIC CHILD

MODULE 30: UNDERSTANDING THE BRAIN THROUGH EPILEPSY

JASON HAVING SEIZURE

DR. DREIFUSS University of Virginia VA Medical Center Charlottesville, VA

ALLISON ANIMATION Brain model

Crystal brain

Neural net

Dr. Dreifuss (V/O):
Jason is suffering,
or we believe him to be
suffering from a
condition which is
almost pure epilepsy,
or what we call
primary epilepsy.

Dr. Dreifuss (O/C): Epilepsy is in some ways a caricature of normal brain Eunction. It is nature's experiment of how the brain works and when we look at a person in an epileptic seizure, it's really a distortion of what one...expects normal brain function to be. But it does teach us a lot about the circuitry of the brain and how it works.

George Page (V/O): If we could penetrate a normal brain with a high-powered microscope and observe neurons in action, we might see them switching on and off in an orderly fashion. During an epileptic seizure, Jason's brain undergoes an electrical storm. The discharge begins in the center of the brain. Then the rest of this brain is switched on, uncontrollably. For a few seconds,

DR. DREIFUSS' OFFICE Charlottesville, VA

ALLISON ANIMATION Synapse

edit "synapses"

George Page (V/O):
the storm encounters
no resistance. It
short-circuits every
one of the brain's
more complex
functions: movement,
mood, thought:
everything.

Dr. Dreifuss (O/C):
Most transactions in
the nervous system
are conducted...as
electrical
messages...and the
actual...

Dr. Dreifuss (V/O):
conduct of
them...electrical impulse
across the...junction
between nerve cells
is a chemical process.

George Page (V/O): In the brain, nerves never actually touch. They're separated by small gaps known as synapses. Chemicals released from one nerve ending attach to the surface of the next nerve ending and cause the nerve to respond electrically. There are two types of chemicals, or neurotransmitters: one type excites the next nerve, causing it to fire. The other inhibits the next nerve from firing.

DR. DREIFUSS' OFFICE

ALLISON ANIMATION Neural Net

JASON'S BEDROOM
JASON HAVING SEIZURE

JASON IN BED BLUE RIDGE HOSPITAL Dr. Dreifuss (O/C):
And we feel that in
Jason's case...he has
primary epilepsy,
which we think is due
to a relative lack of
an inhibitory
neuro-transmitter
system, allowing normal
discharges to become
abnormally dispersed
through the nervous
system.

<u>Dr.</u> <u>Dreifuss (V/O):</u> and during this time his brain ceases its normal function.

Dr. Dreifuss (V/O):
He loses contact.
His eyes feel glazed.
He tends to drop
forward, and..and
then almost immediately,
his...seizure is
again over and he's
back to normal.

George Page (V/O): Jason stayed at Blue Ridge Hospital in Charlottesville, Virginia, for six weeks, under Dr. Dreifuss' care. One goal was to help him overcome his horror of medication. The other was to induce seizures through deep-breathing, so that the electrical discharges of his brain could be monitored. Dr. Dreifuss would then be able to prescribe the drug most appropriate for his epilepsy.

Nurse (V/O):
You're doing great.
Come on. One, two
buckle my shoe. What
did I say Jason?

Jason (O/C):
One, two buckle my shoe.

George Page (V/O):
An epileptic seizure
shows up clearly in
Jesse Salb's images
of the brain. The
electrical storm of
epilepsy strikes like
this...slowed down we
can see how it blocks
the normal
functioning of the brain,
with light colors
representing positive
electrical charges,

George Page (V/O):
Doctors have tried to
control epilepsy
chemically for almost
300 years. Today,
one effective new
drug is valproic
acid, under development
since the 1960's, the
medicine Dr. Dreifuss
ultimately selected for
Jason.

darker ones, negative

charges.

While we cannot be certain how valproic acid works in Jason's brain, Dr. Dreifuss suspects the medication encourages the presence

JESSE SALB'S EEG TOPOGRAPHIC MAPS

INT. UNIVERSITY OF VA. MEDICAL CENTER

BLUE RIDGE HOSPITAL

JASON

ALLISON ANIMATION Neurotransmitters

DR. DREIFUSS

JASON PLAYING BASKETBALL

ASHLEY HORRIGAN CLIMBING TREE

George Page (V/O):
of a neurotransmitter
called GABA. GABA is
a chemical that inhibits
firing. It seems to
control the wild
electrical discharge
of epilepsy. It
seems to keep the
excitatory chemicals
in check.

Dr. Dreifuss (O/C):
Now, in Jason's condition, the seizure...that he has is being to some extent, controlled by our being able to influence the amount of GABA in his nervous system by the administration of this drug.

George Page (V/O): For Jason, seizure control has been made possible by anti-convulsant or anti-epileptic drugs. For others however, seizure control is not possible through medications and alternative treatments are being tried. One of those is to surgically remove the part of the brain causing the seizures.

George Page (V/O):
Ashley is 14 years
old and she has had
epilepsy since she
was 4. Until surgery
7 months ago, she was

TERRI HORRIGAN/CSU

George Page (V/O):
unable to climb a
tree, play at the
park or spend the
night away from home.
The risk of a seizure
was too great. Her
mother, Terri,
describes what
Ashley's seizures
looked like.

Terri Horrigan (O/C): There's times when Ashley would have a seizure and she would stand up and she could walk about, and she would have automatic lip smacking, and automatic movements, and she would be pulling at her shirt or something and she would...and you could call her name, and she'd say "huh?" You'd say, "Ashley, are you okay?" "Yeah." "What color is your shirt?" "Ashley, what's your teacher's name?" "Uh." And you'd say, "Ashley, are you okay?" "Yeah." Pretty soon she'd rub her nose, and she'd be, "Oh, I'm just so tired." "I'm really tired; I just want to lay down." And then you knew that if she did sit down and lay down that she probably had a seizure. And if you

ASHLEY AT SCHOOL

SWEDISH MEDICAL CENTER TERRI AND ASHLEY

ASHLEY

DR. MICHAEL HANDLER, M.D. Swedish Medical Center VIEWING SCANS

Terri (O/C):
could ask her,
"Ashley, you know, do
you remember me
asking you any
questions or do you
remember anything I
said?" She wouldn't
remember anything.

George Page (V/O):
Before her surgery,
Ashley explained to
her classmates the
operations and testing
procedures she would
undergo at Swedish
Medical Center in
Denver, Colorado.

Ashley (O/C): It can be very scary.

George Page (V/O):
The techniques
involved in Ashley's
case will have risks.

Terri (V/O):
One would be to be
left mute, one would
be paralysis, one
would be hemorrhage,
uh, stroke. The
first step is to
discover what is
causing Ashley's
epilepsy.

Dr. Handler (O/C):
We don't see a reason on the films, for her to be having seizures. That's why we have to go after it electrically, we have to go find it electrically.

PREP FOR SURGERY

SURGERY

C/U BRAIN

FAMILY IN WAITING AREA

SURGERY

C/U GRID

POST-SURGERY

C/U ASHLEY POST-SURGERY

George Page (V/O):
A grid of electrodes
will be placed on the
surface of her brain.
These electrodes will
help doctors make a
map of her brain
functions. The
surgeon must first cut
through three layers:
Ashley's scalp, her
skull, and the brain
covering.
Underneath, is Ashley's
brain.

George Page (V/O): Down the hall. her family waits. With the brain exposed, the surgeon puts the first electronic grid in place. In all, six grids will be used to make a window into Ashley's brain. The site is closed. With the grids in place, she will live with them inside her head for a week. When a seizure occurs, the grid will show doctors its location. Ashley will then return for surgery to remove the part of the brain that's causing her epilepsy.

George Page (V/O):
But if the doctors
find that the brain
tissue causing her
seizures is the same
tissue that controls

DR. PAUL LEVISOHN, M.D. SWEDISH MEDICAL CENTER

ASHLEY IN HOSPITAL BED

DOCTORS VIEWING MAPS

ASHLEY

DR. LEVISOHN AND ASHLEY

George Page (V/O):
a major function,
such as speech or
sight, then Ashley
must make a choice:
either lose that
function or live with
her seizures for life.

George Page (V/O):
Ashley's doctor, has
mapped out those portions
of her brain that
affect speech,
memory, and motor
ability. But he
still doesn't know
what part is producing
her seizures.
Finally, Ashley has a
seizure. It's
exactly what the doctors
had hoped.

Dr. Levisohn (O/C):
The speech area is here, but the seizures are beginning down here.

George Page (V/O):
Ashley can now have
the surgery without
fear of losing other
critical functions,
but there are still
risks.

Dr. Levisohn (O/C):
80% likelihood that
it's going to happen,
but there's a small
chance that despite
everything we've
done, we didn't find
the right place and
that your seizures
will continue.

ASHLEY

PREP FOR SURGERY

C/U BRAIN

SURGERY

WAITING ROOM

ASHLEY POST-SURGERY

ASHLEY AT SCHOOL

TERRI HORRIGAN AND ASHLEY

Ashley (O/C):
I think it's all worth it.

George Page (V/O): This is a dangerous procedure. The surgeon is going deep inside Ashley's brain using a microscope to identify the critical tissue. When he locates the area that's producing seizures, he will remove it. He must be thorough enough to remove the entire section and yet be very careful not to damage anything else. The surgery takes over six hours.

George Page (V/O):
The operation is over but the question remains, is the epilepsy gone?

George Page (V/O):
Two weeks later,
Ashley returns to
school without having
had a single seizure.
Now if the stress of
going back to school
does not trigger a
seizure, it will
indicate that the
operation has been
a success.

Terri (O/C):
There are not very
many

ASHLEY

ASHLEY CSU

ASHLEY PLAYING

Terri (O/C):
people that would go
through it with the
bravery that she had.
But you can see that
she does have hair.
Now wouldn't you be
proud of her if she
was your daughter
and went through
all that.

Students (V/O):
Yeah. (Clapping)

George Page (V/O):
Before surgery,
Ashley had some mild verbal memory and word finding problems. Since surgery, her word finding is better, but memory difficulties persist.

Ashley (O/C):
For school, for like homework, I'll have to write down what I have and then the teachers like check the homework. If I'm missing something, then they like write it down for me to do because sometimes I just forget what I have.

George Page (V/O):
But for Ashley, mild memory difficulties are a great tradeoff for being free from seizures. She is now able to do all the things any child her age would want to do.

MODULE 31: BRAIN TRANSPLANTS IN PARKINSON'S PATIENTS

TREMBLING HAND

INT. DR. DAVID MARSDEN; S OFFICE Institute of Psychiatry DR. MARSDEN VIDIFONT 12 Dr. Marsden King's College Hospital Medical Center, London

EXT. LONDON NEWS England

MAN WALKING

EXT. LONDON NEWS

George Page (V/O):
Parkinson's Disease is a relatively common neurological disorder, in which patients slowly develop rigidity, tremor, slowness of movement, and difficulty maintaining balance.

Dr. Marsden (O/C):
The muscles themselves are normal; the nerves supplying the muscles are normal; the spinal cord and the local mechanisms for controlling muscles are entirely normal, and, indeed, even the more sophisticated motor mechanisms coming from the brain itself are capable of functioning normally.

Dr. Marsden (V/O):
Somebody with Parkinson's
Disease, given a big
enough stimulus, may leap
into action in an amazing
way. The classical
example is the...patient
who finds difficulty
crossing the road because
of his gait problems; he
may be very slowly
cruising across the road
when, suddenly, the car
horn goes, and he races
to the

Dr. Marsden (V/O):
opposite side, running,
but when he hits the
pavement, he can't walk
again. So that the basic
mechanisms are there;
it's the starter motor

PATIENT ENTERS HOUSE ALLISON ANIMATION NEURAL NET

ALLISON ANIMATION Brain model

FRENCH FOOTAGE
EXT. CLINIQUE
M/S MME. MOFFLET AND SON

Dr. Marsden (V/O):
that won't work. And it
looks as though the
starter motor is this
particular system of this
particular chemical
called dopamine.

George Page (V/O):
The neurotransmitter
dopamine is the chemical
substance, that
bridges synaptic
gaps between nerve cells
within the basal ganglia.
This chemical is being
supplied to those
synapses by a nearby
region called the
substantia
nigra.

George Page (V/O):
In sufferers of
Parkinson's disease, this
area wastes away.
Without the dopamine it
supplies, they cannot make
full use of the motor
programs that the basal
ganglia provide.

George Page (V/O):
For Madame Mofflet in
France, the disease has
advanced considerably.
For her, even to walk,
her husband and son must
give her minute goals to
attain.

Mme. Mofflet (V/O):
I loved life. I loved everything. And really, the disease took everything away from me. It grabs you by the throat, and it's a horrible feeling; you feel as if you're about to choke.

INT. DR'S. OFFICE MME MOFFLET

NATURE MAGAZINE PET SCAN PHOTO-COLOR

FRENCH FOOTAGE
EXT. CLINIQUE DES MALADIES
DU SYSTEME NERVEUX
MME. MOFFLET WALKING

MME. MOFFLET

George Page (V/O):
At the age of forty-five, she would be housebound were it not for a kind of cure she's about to take: a so-called miracle drug that was introduced in 1970.
Called L-DOPA, it's a drug the brain transforms into dopamine, restoring the victim of Parkinson's to near-normal movement.

George Page (V/O):
In these remarkable PET scans, we can see regions of the brain that are active when a patient absorbs L-DOPA. In the center of the scan, the basal ganglia shows heightened activity as a result of the drug flooding in. It's effects in this central region are what cause those dramatic results.

Mme. Mofflet (V/O):
The minute I take the drug, I feel a gradual relief and everything becomes normal again. I'm much happier. I find myself singing often.

George Page (V/O):
But L-DOPA is neither a permanent cure, nor free from side effects, and scientists have begun to look for other cures.
One of the most promising new approaches involves the implantation of fetal tissue into the basal ganglia of Parkinson's patients.

Dr. Curt Freed University of Colorado Health Sciences Center

DR. OLSON'S LAB

MICE

Dr. Freed (O/C):
The idea of using fetal tissue to help patients with Parkinson's disease actually came from animal experiments that started about 15 years ago. Two groups in Sweden, one Lars Olson in Stockholm, and another group, Anders Bjorkland in Lund, in southern Sweden, did some critical experiments in the rat in which they showed that you could take dopamine cells from very early in fetal development when the rat embryo was about a half an inch long. You could transplant that into a rat model of Parkinson's disease and make that disease improve.

George Page (V/O): And Dr. Olson and his colleagues had shown in this laboratory that in animals several sorts of cell implants could take root in the brain. This kind of research proved that the animal brain can accept and exploit transplanted cellular material. It took ten years of painstaking work before this technique could be applied to even one human being. experiments performed on mice, minute quantities of embryonic brain tissue were implanted into the basal ganglia of adult. animals.

DR. LARS OLSON

DR. OLSON'S LAB

DR. FREED

SURGERY

Dr. Olson (O/C):
They will not
be rejected because the
brain is a...is what is
known as an
immunologically privileged
site. That is to say,
things grafted to the
brain are not rejected
the way they are in other
parts of the body.

George Page (V/O):
In the mice the implanted cells flourished, sending out new fibers and producing the missing neurotransmitter, dopamine. Exactly that same strategy has been applied to humans.

Dr. Freed (O/C):
We at the University of
Colorado were in at
the beginning of this
application to humans.
That was in 1988. That's
when the first experiments
were being done around the
world, and we performed
the first experiment in
the United States in a
patient with Parkinson's
disease.

George Page (V/O):
In their most recent
clinical investigations,
Dr. Freed and his
colleagues use a doubleblind procedure. This
means that
neither the patient, nor
the doctors
evaluating the outcome,
know whether the patient
is actually receiving the
fetal transplant. This

SURGERY

SURGERY

DR. FREED

George Page (V/O):
is the first such study
authorized by the
National Institute for
Health in this new and
controversial area of
medical research.

Dr. Freed (V/O): Half of the patients are getting such transplants, the other half of the patients are going to the operating room, are receiving exactly the same kind of treatment in the operating room, except that the patients do not actually have needles and tissue implanted in their brains, but they do have the skin incised over the skull. They have holes drilled in the skull but they do not have a needle implanted.

Dr. Freed (V/O):
The patients are awake during surgery, and so it is quite challenging to have the activity and timing in the operating room be very close, so that even the anesthesiologist who is in the room doesn't know what surgical procedure is being performed.

Dr. Freed (O/C):
The patients that
we operate on have all been
referred from ColumbiaPresbyterian Hospital in
New York. Our colleagues
there, Dr. Stanley Fawn,

PATIENT PRE-SURGERY PRE-DRUG DOSE MARGARET

PATIENT POST-SURGERY PRE-DRUG DOSE

Dr. Freed (O/C):
and Dr. David Eidelberg,
are actually evaluating
these patients, but they
don't know whether the
individual patient has
received a tissue implant
or a placebo operation.

George Page (V/O): Margaret, although not a part of the double-blind study, was one of Dr. Freed's transplant patients. In this video, made four months before her surgery, and prior to her morning dose of L-DOPA, she shows great difficulty with voluntary movements, even simple things like walking and sitting in a chair. When she was asked repetitive, stereotyped movements, she was very slow, especially with the right hand.

George Page (V/O):
Here she is seen a year
after transplant
surgery, again, before
her initial dose of
L-DOPA.
She is
now able to walk normally,
and can perform
repetitive movements
rapidly. This indicates
her brain is now producing
dopamine on its own.

PATIENT POST-SURGERY ON L-DOPA

MARGARET PLAYING TENNIS

DR. FREED

George Page (V/O):

Seventeen months after surgery,
Margaret is now able to play tennis, running for the ball, and hitting it well. Her transplanted brain tissue is producing more and more dopamine as her recovery continues.

Dr. Freed (O/C): There are actually some very exciting research possibilities though that are almost unique to the transplant business for Parkinson's disease, and that is that we are able to custom design cells that may actually be able to be grown in the laboratory and replace the cells that are missing in the Parkinson patient. It turns out that the brain, like the skin, can reproduce in tissue culture, namely multiply cells that are normal cells, that are not cancerous cells. And then those cells may be transplantable. that's the case, then we could have an infinite number of cells available for transplant without having to resort to aborted fetal tissue. I would say that the timeline for such available cells would be ten years away, not more than twenty years away, probably not less than five years away.

MARGARET PLAYING TENNIS

Dr. Freed (O/C):
...and that's really the excitement of this field scientifically, is being able to custom design a neuron to meet the needs of a group of people like the Parkinson's population.

#### MODULE 32: NEUROREHABILITATION

BRAIN-INJURED INDIVIDUAL USING WALKER IN HIS HOME (Scott H.)

COGNITIVE THERAPY SESSION BRAIN INJURY RECOVERY PROGRAM FORT COLLINS, CO

DR. THOMAS BENNETT

CLINICAL DIRECTOR
BRAIN INJURY RECOVERY PROGRAM
BIN 631/10:18-11:32

George Page (V/O): Brain functions can be understood by examples of how brain injury affects behavior. what happens after a person's brain is injured because of trauma, stroke, brain tumor, or neurological disease? What can be done to help braininjured people return to their greatest level of independence and function?

George Page (V/O):
Brain
injury rehabilitation is
relatively new as a
specialty. In 1980,
there were less than a
dozen brain injury
rehabilitation centers
in the United
States. Now, however,
excellent facilities,
like this one in Fort
Collins, Colorado, are
available in many areas.

Dr. Bennett (O/C):
As a neuropsychologist assessing the impact of brain injury on behavior, I was frustrated by the lack of community based programs that brought together a lot of disciplines and really tried to provide an integrated approach to brain injury

Dr. Bennett (O/C): rehabilitation. So my colleaques and I at the Brain Injury Recovery Program brought together cognitive rehabilitation, speech and language therapy, occupational therapy, neurology, and neuropsychology. And we use physical therapists from the community, and then we do re-entry activities such as return to work, return to school or just trying to help the person return to their normal activities. We use a model of community reintegration where we will teach somebody something to do in our clinic to get around a brain injury problem or actually try to remediate a difficulty they are having such as a problem with attention and a problem with memory. then we have them go out and practice it at work or at school or in their home and then they come back and then we go through it again and then try to get them back to the highest level of functioning that is possible.

BRAIN INJURY RECOVERY PROGRAM JANET INSTRUCTING CONNIE ON COOKING;

JANET AND CONNIE

CHRISTY DITTMAR, OTR Program Coordinator Brain Injury Recovery Program

## Janet (O/C):

Okay, Connie, today
we're going to do a
cooking activity using
the microwave oven. And
I've put the recipe in
this plastic cover so
that you can check off
the ingredients as you
add them, and then check
off the steps as you've
completed them, so you
can hopefully stay on task.

George Page (V/O):
People with
brain injuries are being discharged from hospital settings earlier than in the past. Programs like this allow brain-injured individuals to continue receiving supervision and rehabilitation in their own communities.

Christy Dittmar (O/C): At the Brain Injury Recovery Program, treatment plans are developed individually for each client and that is based on that assessment information that's gained from the rehab team. Treatment includes individual and group therapy, and oftentimes the family participates directly. We encourage that as much as possible. For the more involved person, they may be in the program as much as six hours a day, five days a week. And for the person that needs less intensive rehab, they may be in the program two to four hours an average per week.

COGNITIVE REHABILITATION SESSION BRAIN INJURY RECOVERY PROGRAM

THAIS B.

LYNN INTRODUCING A SPEECH THERAPY ACTIVITY TO ROB

JANET AND CONNIE DISCUSS MEMORY BOOK BRAIN INJURY RECOVERY PROGRAM

George Page (V/O): Depending on a person's needs, a variety of interventions are used. Cognitive rehabilitation therapy uses computerized and table activities to remediate problems in such areas as speed of processing, attention, and problem solving. For students, cognitive rehabilitation provides compensatory academic strategies.

Lynn (O/C):
Rob, today we're going to work on word-finding skills and in particular we are going to work on an exercise called synonym naming. So I am going to show you a list of words...

George Page (V/O):
Speech and language
therapy addresses problems
in communication,
verbal comprehension,
reading,
writing, spelling, and
arithmetic.
Home-based education can
be combined with therapy for
students not yet ready
to return to school.

Janet (O/C):
So Connie, how are
things going with using
your memory
book?

Connie (O/C): I think it's going very well.

Janet (O/C):
You've been good in scheduling appointments.
Are you still doing that as well?

George Page (V/O):
Occupational therapy is
Involved in many aspects
of rehabilitation-from
assessing and providing
treatment for activities
of daily living, such as
cooking, home organization,
and driving;
to providing
compensatory

to providing compensatory strategies for reducing problems with memory, organizational skills, problem solving, and decision making; to treating problems

with balance, visual-perception, and motor skills.

George Page (V/O):
Thais is a 16 year old
junior in high-school.
She suffered a serious
brain injury
in an automobile
accident. Before her
injury, she was a straight
A student and an athlete,
and active in band,
orchestra,
and many extracurricular
activities.

(CLOSE-UP MEMORY BOOK)

(JANET AND CLIENT WORK ON DEXTERITY EXERCISE)

(JANET AND CLIENT ON THERAPY BALLS)

THAIS B.

THAIS B.

THAIS

Thais (0/C): I have had a lot of speech and language problems, like my vocabulary has gotten a lot smaller, like I can't remember like words. Like for the first couple weeks, people would ask me. you know, well what happened? You know like, "What's gotten messed up like from your accident? And I always want to say, you know, my vocabulary's not as big, but I couldn't remember the word vocabulary. And I'd try to describe it, but it would take me like fifty words to describe the word vocabulary.

## Thais (0/C):

The way I think, I don't think flexibly. I only think like in one tunnel. You know like there's this whole area. There's this whole world that I can think of. You know all these ways of fixing things or answers to problems, but I only think of like one tunnel.

# <u>Thais (0/C):</u>

Like, going back to school. It was kind of weird because everybody you know from the looks of me, they knew that I had like gotten hit in the head. But

THAIS' MOTHER PATRICE

PATRICE

## Thais (0/C):

they you know didn't realize that like with a brain injury you know like all this stuff that goes on like your vocabulary and just the way you think is different. They just figured oh yeah, you know, you have like, your nose was the only thing that got you know wrong, you know got messed up in your brain injury. And they didn't expect me to like be different like emotionally, you know just like the way I act and stuff. They figured oh yeah, "Same old Thais."

# Patrice (0/C):

For the first you know three or four days, when she woke up she still had no idea of where she was or what she was doing; she had no memory at all of what had happened. But all of the previous memories were intact as best as we could tell.

### Patrice (0/C):

We had some problems getting along for a while. And a lot of that was the fact that she really didn't recognize that the brain injury was causing some of the problems she was having.

PATRICE

Patrice (O/C):
But, I think that she does realize now that there are some things that she's had problems with and will continue to have problems with that are the effects of the brain injury, and that no matter how much effort she puts forth, it's not going to make that any easier.

THAUT'S GAIT LAB WITH PATIENT

George Page (V/O):
Individuals with brain
injuries often have
trouble walking normally.
One new treatment
combines the body's
natural rhythms with
the rehabilitation process.
Dr. Michael Thaut, of the
Center for Biomedical Research
in Music, uses music
and rhythmic patterns in
rehabilitating
patients
with gait disturbances.

CBRM TAPE WITH MUSIC BACKGROUND

MICHAEL THAUT  $\underline{\text{Dr. Thaut (O/C):}}$  CENTER FOR BIOMEDICAL RESEARCH IN MUSIC I think what we are

Dr. Thaut (0/C): studying from a mechanism point of view is a very interesting aspect of the interaction between the auditory and the motor system, and it relates to rhythmic entrainment mechanisms. In other words, the auditory rhythm, the frequency of the auditory rhythm interacts and locks into movement rhythmicity.

JEAN

JEAN

The entrainment effect is very promising for rehabilitation because apparently we can drive from the outside, from the periphery, we can drive damaged timing networks that usually drive internally, walking ability. We apparently can drive those from the periphery through sensory stimulation, and so replace or restabilize some of the damaged internal networks.

George Page (V/O):
Compensatory strategies
and environmental modifications,
allow many persons
with even severe brain
injuries to return to
independent
living and productive
employment.

This is Jean.
Injured in an accident, she was able to return to her prior job after rehabilitation.

## Jean (0/C):

I survived a brain injury when I was thrown off the back of a motorcycle on October 15, 1988. I was unconscious for about one week and hospitalized for five weeks before I was transferred to a rehabilitation facility where I spent almost five months in recovery.

### NEURONS FIRING

## <u>Jean (O/C):</u>

At the rehabilitation hospital, they said I probably wasn't able to live alone or would never work at the profession I was working in again. But that's not what happened. I was able to resume independent living and return to my old job following treatment at the Brain Injury Recovery Program.

### Jean (V/0):

Rehabilitation helped me get my life back. It helped me gain a confidence that was lost after I was injured and it helped me with both personal and professional skills so I could get back on the job.

### Jean (V/0):

My advice to someone who has suffered a severe brain injury would be to seek professional support and rehabilitation and don't give up. Continue the process no matter how hard it feels.

# George Page (V/O):

Just how the brain recovers from injury and why rehabilitation helps is unclear. There is usually some immediate recovery due to a general healing of the physiology of the brain. Longer term recovery is

CONNIE COOKING

George Page (V/O): more mysterious. There may be some regeneration of damaged pathways. Another possibility is neural reorganization, where areas that once played a minor role in a cognitive process take on a more dominant role. Finally, rerouting signals around damaged areas in the brain may contribute to recovery. All of these possibilities await verification.

George Page (V/0): The damaged brain seems to learn and apply compensatory strategies acquired in rehabilitation. This ability of the brain to be aware of its injury and circumvent the resulting problems is yet another example of the brain's extraordinary capabilities, and adds to its aura of mystery.