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Session 3

Place Value

Key Terms in This Session

Previously Introduced
• e

New in This Session
• base • exponent • laws of exponents

• logarithm • scientific notation

Introduction
In Session 2, while exploring the significance of the number 0, we mentioned its role in a place-value system. In
this session, we will strengthen our understanding of place value by looking at systems based on numbers other
than 10.

Learning Objectives
In this session, you will do the following:

• Interpret the value of numbers in base systems other than base ten

• Translate number values from one base system to another

• Relate base two numbers to circuitry and Boolean algebra

• Understand the rules of exponents and how they relate to logarithms
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Base Two
The number systems we’ve been looking at so far in this course use 10 digits (0 through 9), and the value of each
position in a number is some power of 10 (1; 10; 100; 1,000; etc.). We refer to this number system as base ten. But
numbers can also be written in other bases. In base two, for example, we have two digits (0 and 1), and the value
of each position in a number is some power of 2.

To interpret numbers in base ten, we must look at each digit and determine the value of that digit according to
its place in the number. The convention we use is that each place value, moving from right to left, represents an
increasing power of 10:

In order to understand the value of a number, we need to consider both its face value and its place value. In 2,342,
there are two 2s (the face values), but each of these 2s has a different place value (1,000 and 1). Thus, the value of
any number is found by multiplying each face value by its place value and then adding the results.

For example, the value of 234,567 in base ten is:

(2 • 105) + (3 • 104) + (4 • 103) + (5 • 102) + (6 • 101) + (7 • 100),

or

(2 • 100,000) + (3 • 10,000) + (4 • 1,000) + (5 • 100) + (6 • 10) + (7 • 1).

Similarly, we can consider numbers that are less than 1. The following two numbers may look similar if we look
only at their face values. However, they have different place values, which is evident from the following:

0.02 = (0 • 100) + (0 • 10-1) + (2 • 10-2) = 2 • 10-2

0.002 = (0 • 100) + (0 • 10-1) + (0 • 10-2) + (2 • 10-3) = 2 • 10-3

Thus, 0.02 and 0.002 are two distinct numbers in the base ten system.

Interpreting numbers in base two works the same way, except that the base of each digit is some power of 2
instead of 10. We determine the value of digits in a base two number in a similar way. Remember, though, we can
only use two digits in this system as face values, the digits 0 and 1, and the place values are powers of 2.

Here are base two place values, written as base ten numbers:

… 25 24 23 22 21 20 2-1 2-2 …

… 32 16 8 4 2 1 1/2 1/4 …

Note that both 100 and 20 equal 1. This and other rules about exponents will be explored further in the next part
of this session.

Part A: Base Two Numbers (45 min.)
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We can also look at a base two number and find its value in base ten. For example, the base ten value of the base
two number 101110 is:

(1 • 25) + (0 • 24) + (1 • 23) + (1 • 22) + (1 • 21) + (0 • 20),

or

(1 • 32) + (0 • 16) + (1 • 8) + (1 • 4) + (1 • 2) + (0 • 1) = 46.

Problem A1. Try counting in base two. Explain the patterns you see, and compare them to our base ten system.
[See Tip A1, page 57] 

Converting Between Bases
When converting numbers from one base to another, it is important to remember that in a positional system, we
group quantities into the largest place value possible. For example, in the number 234 in base ten, we have 2 hun-
dreds rather than 20 tens.

An analogy you can use is packaging. Imagine that you are trying to package a quantity of items in the most effi-
cient way, using the least number of boxes (groups). Thus, in base ten you would fill all the boxes that can hold
100 before you start filling the boxes that hold only 10; you’d fill the size 10 boxes before the boxes that hold only
one; and so on.

The same idea applies to base two. Your packages, however, are of different sizes (32, 16, 8, ...). So, when con-
verting between bases, we are essentially repackaging from using one set of boxes (...1,000, 100, 10, 1, ... for base
ten) to another (...32, 16, 8, 2, 1, ...for base two). Note that this process works both ways and for all bases.

So, to convert or repackage a base ten integer such as 52 to base two, first you determine which boxes (groups)
would be the most efficient, and then you use the least number of boxes.

Let’s work it out step by step:

52ten = _____two

Step 1: Record the base ten powers of 2 from right to left, starting with 20, or 1. Continue until you reach the place
where the next power would be greater than the base ten number you are trying to convert. Using the packaging
analogy, these will be your new boxes for repackaging.

Here are the base ten powers of 2:

25 24 23 22 21 20

32 16 8 4 2 1

In our case, we can stop at 25 since 26 = 64, and 64 is greater than 52. This box would be too large for 52 items.

Part A, cont’d.
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Step 2: Next, record a 1 in the place of the greatest power less than your number (i.e., the biggest box you can
use), and subtract that base ten value from your number.

For example, we can fill one size 32 box from the 52 items, so write a 1 in that place:

32 16 8 4 2 1

1

Subtract to see what’s left:

52 - 32 = 20

Step 3: Now look at the difference. What is the next biggest power of 2 (the next-size box) we can use? 

In this case, 20 is greater than the next-smaller power of 2 (i.e., 16) so we can fill one box of 16 items as well. Write
a 1 in that place:

32 16 8 4 2 1

1 1

Subtract to see what’s left:

20 - 16 = 4

Step 4: Continue filling the remaining boxes until the remainder is 0, recording a 1 or a 0 as required.

For example, you couldn’t fill a box of size 8 with four items, so write a 0 in that place. But you could fill the next
smaller box with four items. Write a 1 in that place:

32 16 8 4 2 1

1 1 0 1

Subtract to see what’s left:

4 - 4 = 0

Since we have reached 0, we know we are done. As a result, there is no 2 and no 1, and we can write a 0 in each
of those places. We have just efficiently re-packaged the number 52, using the fewest new boxes (powers of two):

32 16 8 4 2 1

1 1 0 1 0 0

Thus, 52 in base ten is equivalent to 110100 in base two: 52ten = 110100two.

Problem A2. Translate the following numbers from one base to the other:

a. 38ten= _________two 

b. 63ten = _________two 

Problem A3. Translate the following numbers from one base to the other:

a. 1101two = _________ten

b. 11111two = _________ten

Part A, cont’d.
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Can you apply the packaging analogy to explain Doug’s finding?

Base Two Numbers in Computing 
Base two numbers are very useful in computers and other appliances with circuitry, because electricity uses a two-
value system. An electric current is either on (1) or off (0). Thus, all commands to a computer are relayed via cir-
cuits that either conduct (1) or do not conduct (0) an electric current. These two states of electric current
correspond to two digits in the base two system, 0 and 1. In order to carry out complicated instructions, the cir-
cuits must obey the laws of logic.

There are two basic circuits, an “and-circuit” and an “or-circuit.” In the “and-circuit,” both p and q switches must be
on to light the bulb. Electricity will flow only if both p and q are closed:

Circuit for p and q (series circuit)

In the “or-circuit,” either p or q must be on to light the bulb. Electricity will flow if either p or q are closed:

Circuit for p or q (parallel circuit)

A branch of mathematics called Boolean algebra deals with the logic that must be applied to create complicated
circuits. Calculators and computers use microchips that are made with specific circuits that mimic the rules of
Boolean algebra.

Part A, cont’d.

Video Segment (approximate time: 9:54-11:12): You can find this segment
on the session video approximately 9 minutes and 54 seconds after the
Annenberg/CPB logo. Use the video image to locate where to begin viewing.

In this video segment, Doug and Tom convert numbers from base two to base
ten and vice versa. Doug notices that the number 63 in base ten is one less
than the next power of two, and he explains how his finding is reflected in the
answer. Watch this segment after you’ve completed Problems A2 and A3.

Video Segment (approximate time: 20:42-22:23): You can find this segment
on the session video approximately 20 minutes and 42 seconds after the
Annenberg/CPB logo. Use the video image to locate where to begin viewing.

In this segment, Deborah Douglas explains the history of base two numbers
in early computer technology. The two digits of the binary system, 1 and 0,
correspond to the presence or absence of electric current. This was a basic
principle behind computer memory.
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Operations With Exponents
As you saw earlier in this session, one way to represent each power of two is to write the base (two) raised to a
power (another number). This other number is known as the exponent. An exponent tells us how many times the
base is used as a factor. Exponents can simplify the calculations for such operations as multiplication and division.
For example, rather than multiply 16 • 32, we can multiply 24 • 25. Let’s look at how this is done.

To compute with numbers that have exponents, you need to understand how exponents work. Here are some
basic rules to begin with:

• To add or subtract numbers with exponents, the base numbers must be the same, and the exponents must
also be the same:

x4  +  x4  +  x3  +  x3  =  2x4  +  2x3

• To multiply numbers with exponents, the base numbers must be the same; then we simply add the expo-
nents. For example:

x4 • x3

x4 = x • x • x • x and x3 = x • x • x

Because multiplication is both associative and commutative, we can solve these equations as one:

x4 • x3 = x • x • x • x • x • x • x = x7

So the end result, x7, is equivalent to x4 + 3:

x4 • x3 = (x • x • x • x) • (x • x • x) = x4 + 3 = x7

This presumes that both the bases are the same. In other words, for example, we couldn’t multiply 22 by 33

because the bases are not the same.

• To divide numbers with exponents, the base numbers must be the same; then we simply subtract the expo-
nents. For example:

x5

=
x • x • x • x • x  

= x2

x3 x • x • x

So the end result, x2, is equivalent to x5 - 3. Similarly:

x4

=
x • x • x • x   

= x4-3 = x1

x3 x • x • x

These examples illustrate the meaning of positive-integer exponents. But what does an exponent of 0 represent?

Problem B1. Use the rule xa ÷ xb = xa-b to figure out the value of x when the exponent is 0. [See Tip B1, page 57]

Problem B2. What happens if the exponent is a negative integer like -1? Solve x3 ÷ x4 to find out. Explain why x
cannot be equal to 0.

Part B: Exponents and Logarithms (35 min.)
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Now let’s look at what happens when the exponent is a fraction or a decimal. We know that for positive numbers
greater than or equal to 1, x2 ≤ x3 ≤ x4. Is this true for exponents between 0 and 1?

Problem B3.

a. Use the rules for multiplying exponents to determine the meaning of x1/2.

b. How about x1/3?

c. Which value is greater for positive numbers greater than 1?

Problem B4. Express (x3)2 as a multiplication problem and then simplify it as much as possible.

Problem B5. Consider your answers to Problems B1-B4. In each case, can 0 be a valid base? Explain why (or why not).

Scientific Notation
When doing complicated computations with very large or very small numbers, people often write the numbers
in scientific notation so that they can more easily estimate the magnitude of the number. In scientific notation,
every number is written as a decimal number greater than or equal to 1 but less than 10, multiplied by a power
of 10. Thus, the decimal always has exactly one non-zero digit to the left of the decimal point. For example, 6,253
would be written 6.253 • 103, and .06253 would be written 6.253 • 10-2. The best way to remember how to find the
correct power of 10 is to write the number with one digit to the left of the decimal point and then think about
what to do to that decimal to make it equal to the original number.

Problem B6. Write the following numbers using scientific notation:

a. 43,007

b. 0.00245

c. -675

Scientific notation can help us quickly perform operations on large numbers. Calculating 2,300,000 •
3,000,000,000 is much easier to think of as the following:

(2.3 • 106) • (3.0 • 109) = 6.9 • 1015

Problem B7. Perform the following calculations using scientific notation:

a. 2,300,000 + 790,000

b. 10,000,000 • 678,000,000,000

c. 1,490,000,000 ÷ 7,000

Part B, cont’d.
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Logarithms
John Napier from Scotland invented logarithms in the early 17th century. Napier was not a professional mathe-
matician, but he made many important contributions to mathematics. He invented not only logarithms but the
decimal point as well, and he carved multiplication tables on sticks to simplify the multiplication of multi-digit
numbers.

What are logarithms? Basically, they are exponents. In order to use logarithms, you must stipulate both the base
and the exponent. Here is one example: Since 23 is equal to 8, we can write in symbols log28 = 3, which we read
as “log to the base two of 8 is 3.” This means that the exponent needed on the base two to get to 8 is 3. When
working in base ten, it is not necessary to write the base. For example, log 50 is the same as log1050.

Before the advent of calculators and computers, logarithms were extremely important because they simplified
complex multiplication and division by turning them into simple addition or subtraction, and reduced powers to
multiplication. [See Note 1]

Most calculators are programmed with values for base ten (abbreviated LOG) and base e (abbreviated LN) loga-
rithms. The letter e represents the transcendental number that is the base of natural logarithms. The value of e is
found by taking the limit of (1 + 1/n)n as n approaches infinity. This gives the value of about 2.718.

Problem B8.

a. What is log 100? [See Tip B8, page 57]

b. What is log 381?

c. What is the base ten number whose log is 4?

d. What is log bb?

Problem B9.

a. Estimate the value of log550.

b. Estimate the value of log3100.

[See Tip B9, page 57] 

Part B, cont’d.

Note 1. When you use logarithms to multiply numbers with the same base that each contain exponents, you essentially reduce a multiplica-
tion problem to an addition problem. This is not so important now, but before the age of calculators and computers, it saved hours of work.
Similarly, writing numbers in scientific notation allows us to estimate the magnitude of the result of a computation.
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Examining Base Four
In Part C, we shift our focus to the base four number system. You will learn how to interpret whole numbers,
common fractions, and decimals using this system.

In base ten, 123 means (1 • 100) + (2 • 10) + (3 • 1), and 1.23 means (1 • 1) + (2 • [1/10]) + (3 • [1/100]). Or, to put it
another way:

123ten= (1 • 102) + (2 • 101) + (3 • 100)  and  1.23ten= (1 • 100) + (2 • 10-1) + (3 • 10-2)

We can represent each of the place values in the base ten number 123 with pieces of 100 units (102), 10 units (101),
and one unit (100). They are called flats, longs and units respectively.

The base four number system uses these place values:

44 43 42 41 40 4-1 4-2

128 64 16 4 1 1/4 1/16

So in base four:

123 means and 1.23 means

(1 • 16) + (2 • 4) + (3 • 1), (1 • 1) + (2 • [1/4]) + (3 • [1/16]),

or or

123four = (1 • 42) + (2 • 41) + (3 • 40), 1.23four = (1 • 40) + (2 • 4-1) + (3 • 4-2).

We can represent each of the place values in the base four number 123 with pieces of 16 units (42), four units (41),
and one unit (40). They are called flats, longs and units respectively.

Problem C1. Write the base four numbers 123four and 1.23four in expanded notation and complete the base ten
value of the number. Check your answer by counting the place-value pieces in the illustration above.

Part C: Place-Value Representation in
Base Ten and Base Four (40 min.)
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Problem C2. Find the base ten fractions represented by the following:

a. 0.1four, 0.2four, and 0.3four

b. 0.01four, 0.02four, and 0.03four

c. 0.11four, 0.12four,and 0.13four [See Tip C2, page 57] 

Problem C3. Find the base four representation for these base ten fractions:

a. 1/2

b. 5/8

c. 7/8

d. 1/64

[See Note 2] [See Tip C3, page 57]

Problem C4.

a. If you were counting in base four, what number would you say just before you said 100? (Read this number
as “one-zero-zero,” not “one hundred.”)

b. What number is one more than 133? (Read this number as “one-three-three.”) [See Tip C4, page 57] 

c. What is the greatest three-digit number that can be written in base four? What numbers come just before
and just after this number? 

Did you find it necessary to think about what each place value means in order to solve these problems in base
four?

Problem C5.

a. Count by twos to 30four.

b. In base four, how can you tell if a number is even? [See Tip C5, page 57] 

c. Count by threes to 30four.

Part C, cont’d.

Note 2. We will learn more about converting fractions to decimals in Session 7.

Video Segment (approximate time: 16:15-18:47): You can find this segment
on the session video approximately 16 minutes and 15 seconds after the
Annenberg/CPB logo. Use the video image to locate where to begin viewing.

In this video segment, Ben and Liz work with manipulatives to represent
numbers in base four and solve some arithmetic problems. They realize that
they need to move to the next place value in base four. Watch this segment
after you’ve completed Problems C1-C4.
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Operations in Base Four
In the following activity, make several copies on stiff paper and cut out the base four blocks from page 56. You will
use them to visualize place value in base four operations. The pieces are called flats, longs, and units, and they rep-
resent 42, 41, and 40, respectively. Use the blocks to solve Problem C6.

Remember that there are four digits in base four 
(0 through 3). For addition problems, every time you have
four blocks of the same type (a given place value), you
need to trade them (or regroup them) for one block of the
next-larger place value on the left. So, for example, four
blocks representing 40 (four units) would be traded for
one block representing 41 (one long).

Similarly, for subtraction, every time you don’t have enough blocks in a given place value to do the subtraction,
you need to take one larger block from the place value on the left and trade it for four blocks of the next-smaller
place value on the right. So, for example, one block representing 41 (one long) can be traded for four blocks rep-
resenting 40 (four units). [See Note 3]

Problem C6. Complete the following calculations of these base four numbers:

a. 33four + 11four

b. 123four + 22four

c. 223four - 131four

d. 112four - 33four

Can you make a prediction about what number systems computers will use in the future?

Part C, cont’d.

Note 3. Think of how the base four blocks help you understand operations with base four numbers. Similarly, contemplate how base ten
blocks would have helped you when you learned to add, subtract, multiply, and divide in base ten.

Try It Online! www.learner.org

This problem can be explored as an Interactive
Activity. Go to the Number and Operations Web
site at www.learner.org/leaningmath and find
Session 3, Part C.

Video Segment (approximate times: 22:24-24:13 and 25:14-25:28): You can
find the first part of this segment on the session video approximately 22 min-
utes and 24 seconds after the Annenberg/CPB logo. The second part begins
approximately 25 minutes and 14 seconds after the Annenberg/CPB logo.
Use the video image to locate where to begin viewing.

Why is computing in different bases useful? In this segment, Mr. Glasgow and
Mr. Marable explain how today’s computer technology relies on base sixteen
numbers in order to compress complex computer operations.
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Problem H1. Write the base five numbers 1234five and 1.234five as base ten numbers.

Problem H2. Find the base ten fractions represented by the following:

a. 0.1five, 0.2five, 0.3five, and 0.4five

b. 0.01five, 0.02five, 0.03five, and 0.04five

c. 0.12five, 0.23five, 0.34five, 0.43five

Problem H3. Find the base five representation for these base ten fractions:

a. 9/25

b. 23/125

Problem H4.

a. If you were counting in base five, what number would you say just before you said 100? 

b. In base five, what number is one more than 344?

c. What is the greatest three-digit number that can be written in base five? What numbers come just before
and just after this number? 

Problem H5. What number in base five behaves the way 3 does in base four?

Problem H6.

a. Count by twos to 30five.

b. In base five, how can you tell if a number is even?

c. Count by threes to 30five.

Take It Further
Problem H7. Find the base five representation for the base ten fraction 1/2.

Take It Further
Problem H8. How might you tell if a number is even or odd in bases two, three, four, five, six, seven, eight, nine,
and ten? Can you generalize to base n?

Homework 
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Problem H9. In order to use base sixteen, we need 16 digits. However, we only know 10 digits—0, 1, 2, ... , 8, and
9—so to represent 10, 11, 12, 13, 14 and 15 in base sixteen, we’ll use A, B, C, D, E and F, respectively. This gives us
the following representation for the base sixteen digits:

Remember that 16 in this base is written as 10 (one-zero). So, for example, the number A6sixteen becomes 
(10 • 16) + 6, or 166, in base ten. The number 123 in base ten is (7 • 16) + 11 , or 7B, in base sixteen.

Now translate these base sixteen numbers into base ten numbers:

a. 6Dsixteen

b. AEsixteen

c. 9Csixteen

d. 2Bsixteen 

Problem H10. Using the same system, translate these base ten numbers into base sixteen numbers:

a. 97

b. 144

c. 203

d. 890

Homework, cont’d.

Digit Base Sixteen 
Representation

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F
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4 x 4 1 x 4

1 x 1

Base Four Blocks
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Part A: Base Two Numbers

Tip A1. Look at what happens to particular place values as you count.

Part B: Exponents and Logarithms 

Tip B1. If a – b = 0, what does that tell you about a and b?

Tip B8. This question is asking, what exponent is needed in base ten to get 100? In other words, if 10x = 100, what
is x?

Tip B9. These logarithms will be decimals. Try to figure out between which integers these decimals will fall.

Part C: Place-Value Representation in Base Ten and Base Four 

Tip C2. What number is represented by “11” in base four? It is not what we would call 11!

Tip C3. Play with these fractions to get them into the desired form: x/4 + y/16 + z/64.... Remember that in base
four, the face values of x, y, and z can only be digits 0 through 3.

Tip C4. Use the base four blocks diagram on page 51.

Tip C5. Look for a pattern in the results of the first question to help you answer the second.

Tips
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Part A: Base Two Numbers

Problem A1. Counting in base two would look like this:

1 10 11 100 101 110 111 1000 1001

A pattern you can observe is that each time you’ve reached the highest possible digit in a particular place value
(which in this system is 1), you move to the next place value. This is the same pattern that occurs in base ten (as
well as any other base), the only difference being that the highest possible digit in the base ten system is 9.

Problem A2.

a. The answer is 100110. The highest power of 2 we can make with 38 is 32, so our columns should read 32,
16, 8, 4, 2, and 1. We can use the 32 (38 - 32 = 6), so we record a 1 in that column. We can’t use a 16 or an 8,
so we record zeros in those columns. The next-highest power we can use is 4 (6 - 4 = 2), so we record a 1 in
that column as well as the next one. Therefore, 38ten = 100110two.

b. The answer is 111111. The highest power we can make with 63 is 32, so our columns should read 32, 16, 8,
4, 2, and 1, as before. We can use the 32 (63 - 32 = 31), so we record a 1 in that column. We can use the next-
highest power, 16 (31 - 16 = 15), then the next-highest (15 - 8 = 7), then the next-highest (7 - 4 = 3), then
the next-highest (3 - 2 = 1), and finally the last power (1 - 1 = 0). All six columns are filled with 1s, so 63ten =
111111two.

Problem A3.

a. This value is equal to (1 • 23) + (1 • 22) + (0 • 21) + (1 • 20) = 13.

b. This value is equal to (1 • 24) + (1 • 23) + (1 • 22) + (1 • 21) + (1 • 20) = 31.

Part B: Exponents and Logarithms

Problem B1. One way to do this division is to use the rule that xa ÷ xb = xa - b. Here, this means that x3 divided by x3

equals x0. The other way to do this is to recognize that we are dividing a number by itself and that any non-zero
number divided by itself equals 1:

1=
x3

=
x • x • x   

= x3-3 = x0

x3 x • x • x

Since the answers must be the same, this means that x0 = 1 for any value of x except 0.

Problem B2. One way to do this division is to use the rule that xa ÷ xb = xa - b. Here, this means that x3 divided by x4

equals x-1. The other way to do this is to write out the numerator and denominator:

x • x • x

x • x • x • x

If x is not 0, we can cancel x three times from the numerator and denominator to leave 1/x as the final answer. Since
the answers must be the same, this means that x-1 = 1/x for any value of x except 0 (1/x is undefined for x = 0). There-
fore, in any division problem involving a negative exponent, we must restrict the base to a non-zero number.

Solutions
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Problem B3.

a. If x1/2 follows the same rules as xm for integer m, then x1/2 multiplied by x1/2 must be x. This means that x1/2 is
the number we multiply by itself to make x. This is the definition of a square root, so x1/2 represents the
square root of x.

b. Similarly, x1/3 needs to be multiplied by itself three times to make x, so it is the cube root of x.

c. If x is a positive number greater than 1, then x1/2 will be greater than x1/3. One way to think about this is to
look at x1/6, the sixth root of x. Since x is greater than 1, x1/6 is also greater than 1. If x1/6 were positive but less
than 1, multiplying it by itself would give a smaller number. Since x1/6 is greater than 1, multiplying it by
itself produces a larger number each time.

If you multiply x1/6 by itself, or x1/6, you get x2/6, or x1/3. Meanwhile, x1/6 multiplied by itself three times 
produces x3/6, or x1/2. Therefore, x1/2 must be larger than x1/3 if x is a positive number greater than 1.

Therefore, we know that x0 < x1/6 < x1/3 < x1/2 < x2/3 < x1.

(The points on the line above are not drawn to scale.)

Problem B4. To do this, we write out exponentiation as repeated multiplication: (x3)2 = x3 • x3 = (x • x • x) • (x • x • x).
According to the rules given earlier, we add these exponents when multiplying, so the result is x6, the same value
as x3 • 2.

In general, consider (xa)b. Writing this as a multiplication problem, we’d see xa • xa • xa ... • xa, where there are b occur-
rences of xa. Adding these exponents, we get a + a + a … + a; that is, a added to itself a total of b times. Repeated
addition is multiplication, so the result is ab, the product of a and b. So we see that, in general, (xa)b = x(a • b) = xab.

Problem B5. Zero cannot be used as a base for several reasons. The base can only be 0 when working with rules
involving multiplication and exponentiation of positive exponents. However, all positive powers of 0 equal 0, and
products and sums of 0 are all 0, thus making a one-value system. Since we cannot divide by 0, we cannot define
00 as 0n ÷ 0n for some n (see Problem B1 for more information). Additionally, we cannot define 0n for any negative
n (see Problem B2).

Problem B6.

a. 43,007 = 4.3007 • 104. The lead digit (4) was originally in the 10,000, or 104 position, so when we move it to
the 100 position, we must multiply by 104. Multiplying 4.3007 by 104 gives us 43,007.

b. 0.00245 = 2.45 • 10-3. The lead digit (2) was originally in the 1/1000, or 10-3, position, so when we move it to
the 100 position, we must multiply by 10-3. Multiplying 2.45 by 10-3 gives us 0.00245.

c. -675 = -6.75 • 102. The lead digit (6) was originally in the 100, or 102, position, so when we move it to the 100

position, we must multiply by 102. Multiplying -6.75 by 102 gives us -675.

Problem B7.

a. 2,300,000 + 790,000 = (2.30 • 106) + (.79 • 106) = 3.09 • 106 

b. 10,000,000 • 678,000,000,000 = (1 • 107) • (6.78 • 1011) = 6.78 • 107 + 11 = 6.78 • 1018

c. 1,490,000,000 ÷ 7,000 = (1.49 • 109) ÷ (7 • 103) = (1.49 ÷ 7) • 109 - 3 = 0.213 • 106

Solutions, cont’d.
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Problem B8.

a. In exponential form, log 100 is 10x = 100. Since 102 = 100, log 100 = 2.

b. In exponential form, log381 is 3x = 81. Since 3 • 3 • 3 • 3 = 34 = 81, the solution is 4.

c. If log x = 4, the equation in exponential form is 104 = x, so x = 10,000.

d. The equation is bx = b. This is solved by x = 1 for all valid bases for b (with the convention that b must be
positive and not equal to 1).

Problem B9.

a. Log5 50 = x. We can also write this expression as 5x = 50; i.e., 5 raised to what power equals 50? We know that
52 = 25 and 53 = 125, so we can estimate x as somewhere between 2 and 3. To bring our estimate even
closer, we can see what happens for x = 2.5, which, converting it into a fraction, can be written as 25/10, or
5/2. So we write 55/2 = √55 = 55.9. Thus we can further narrow down our estimate by saying that x is slightly
under 2.5.

b. Similarly, log3100 = y can be written as 3y = 100. We know that 34 = 81 and 35 = 243, so we can estimate y as
somewhere between 4 and 5. For y = 4.5, we can convert 4.5 into a fraction by writing 4.5 = 45/10 = 9/2. So
we get 39/2 = √39 = 140.3. Thus we can further narrow down our estimate by saying that y is somewhere
between 4 and 4.5.

Part C: Place-Value Representation in Base Ten and Base Four

Problem C1. 123four = (1 • 42) + (2 • 41) + (3 • 40) = 16 + 8 + 3 = 27. The illustration demonstrates the number 27
divided into groups of 42, 41, and 40.

1.23four = (1 • 40) + (2 • 4-1) + (3 • 4-2) = 1 + 2/4 + 3/16 = 1 11/16

Problem C2.

a. 0.1four is equal to 1/4 in base ten. 0.2four is twice 0.1four, so it is 2/4 = 1/2. 0.3four is three times 0.1four, so it is 3/4
in base ten.

b. 0.01four is equal to 1/16 in base ten. 0.02four is twice 0.01four, so it is 2/16 = 1/8. 0.03four is three times 0.01four,
so it is 3/16 in base ten.

c. 0.11four = 0.1four + 0.01four. This sum is 1/4 + 1/16 = 5/16. Similarly, 0.12four = 1/4 + 2/16 = 6/16 = 3/8,
and 0.13four = 1/4 + 3/16 = 7/16.

Problem C3.

a. 1/2 is equivalent to 2/4, so as a base four decimal, it would be written as 0.2four.

b. 5/8 = 4/8 + 1/8 = 2/4 + 2/16 = 0.22 in base four.

c. 7/8 = 6/8 + 1/8 = 3/4 + 2/16 = 0.32 in base four.

d. 1/64 = 0.001 in base four.

Solutions, cont’d.
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Problem C4.

a. Since the digits in base four are 0, 1, 2, and 3, the last digit before “rolling over” to the next place value is 3.
The number just before 100 is 33 (..., 30, 31, 32, 33, 100).

b. One more than 133 is 200. Adding 1 to 133 gives us one 16, three 4s, and four 1s. Four 1s equals one 4, so
this gives us one 16, four 4s, and zero 1s. Four 4s equals one 16, so we now have two 16s, zero 4s, and zero
1s—200.

c. The greatest three-digit number is 333. Just before 333 is 332, and just after 333 is 1000.

Problem C5.

a. The count goes 2, 10, 12, 20, 22, 30.

b. Even numbers in base four end in 0 or 2. This can be seen by the previous question; any number in the list
formed from counting by twos is even.

c. The count goes 3, 12, 21, 30.

Problem C6.

a. 33four + 11four = 110four b. 123four + 22four = 211four

c. 223four - 131four = 32four d. 112four - 33four = 13four

Homework

Problem H1.

1234five = (1 • 53) + (2 • 52) + (3 • 51) + (4 • 50) = 125 + 50 + 15 + 4 = 194 in base ten.

1.234five = (1 • 50) + (2 • 5-1) + (3 • 5-2) + (4 • 5-3) = 1 + 2/5 + 3/25 + 4/125 = 194/125 = 1 69/125 in base ten.

Problem H2.

a. The base ten fraction for 0.1five is 1/5. The others are 2/5, 3/5, and 4/5.

b. The base ten fraction for 0.01five is 1/25. The others are 2/25, 3/25, and 4/25.

c. The base ten fraction for 0.12five is 7/25 (1/5 + 2/25). The others are 13/25 = 2/5 + 3/25, 19/25 = 3/5 + 4/25,
and 23/25 = 4/5 + 3/25.

Problem H3.

a. 9/25 = 5/25 + 4/25 = 1/5 + 4/25 = 0.14five

b. 23/125 = 20/125 + 3/125 = 4/25 + 3/125 = 0.043five

Problem H4.

a. The number just before 100 is 44. The count goes ...40, 41, 42, 43, 44, 100....

b. The number that is one larger than 344 is 400. Carrying a 1 to the next digit is required for both the ones
digit and the fives digit.

c. The greatest three-digit number that can be written in base five is 444. Just before this number is 443, and
just after it is 1000.

Solutions, cont’d.
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Problem H5. Four. In base four, 3 is the greatest digit; adding 1 to a 3 requires regrouping. In base five, this is true
of the number 4. In general, in any base n, the number n - 1 will be the greatest digit and will require regrouping
when 1 is added to it.

Problem H6.

a. The count goes 2, 4, 11, 13, 20, 22, 24. Note that 30five is not a multiple of 2.

b. It is more difficult to decide this in base five. The easiest way is to look for the sum of the digits of a number.
If the sum is even, the number is even.

c. The count goes 3, 11, 14, 22, 30.

Problem H7. We know that in base five, we write a fraction as (A • 50) + (B • 5-1) + (C • 5-2) + (D • 5-3) + …, where A,
B, C, and D can only be 0, 1, 2, 3, or 4. To tackle this problem, refer to the algorithm we used in Problem A2. There,
we found the largest number we could make as a power of 2, then subtracted to find a remainder, then continued
to the next power of 2. Here, we’ll do this with powers of 5.

First we find A: 1/2 = A • 50 + .... Since 50 = 1, which is larger than 1/2, we cannot make 50 from 1/2. Therefore, A = 0.

Now find B: 1/2 = B • 5-1 + .... Since 5-1 = 1/5 = 0.2 and 1/2 = 0.5, we can make two 5-1s from 1/2. Therefore, B = 2.
Now subtract 2/5 from 1/2 to leave 1/10, the remainder.

So far, our base five decimal is 0.2____. Now find C using the remainder from the previous step: 1/10 = C • 5-2 + ....
Since 5-2 = 1/25 = 0.04 and 1/10 = 0.1, we can make two 5-2s from 1/10. Therefore, C = 2. Now subtract 2/25 from
1/10 to leave 1/50, the remainder.

At this point, our base five decimal is 0.22___. Now find D using the remainder from the previous step: 1/50 = D •
5-3 + .... Since 5-3 = 1/125 = 0.008 and 1/50 = 0.02, we can make two 5-3s from 1/50. Therefore, D = 2. Now subtract
2/125 from 1/50 to leave 1/250, the remainder.

You might have noticed a repeating pattern. This is caused by the fact that our remainder has been one-fifth of
the previous remainder at each step, and that we are using base five. This means that the pattern will continue
indefinitely, and 1/2 = 0.2222222..., a repeating decimal, in base five. This is a perfect case to support the saying “A
picture is worth a thousand words.” Here is this proof in visual form:

Each piece is This line splits the whole Half of the whole is 
one-fifth of the whole. into two halves. two-fifths and half of a third fifth.

The third fifth can be further divided into five 25ths, and the drawings will look like the ones above, except that
every piece will be 1/25th instead of one-fifth. This process continues.

For each place value, we need two of the five parts (i.e., two fifths, two 25ths, two 125ths, and so on). The decimal
is 0.222222....

Solutions, cont’d.
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Problem H8. Here is a count of the first seven multiples of 2, from base two to base ten:

Base two: 10, 100, 110, 1000, 1010, 1100, 1110

Base three: 2, 11, 20, 22, 101, 110, 112

Base four: 2, 10, 12, 20, 22, 30, 32

Base five: 2, 4, 11, 13, 20, 22, 24

Base six: 2, 4, 10, 12, 14, 20, 22

Base seven: 2, 4, 6, 11, 13, 15, 20

Base eight: 2, 4, 6, 10, 12, 14, 16

Base nine: 2, 4, 6, 8, 11, 13, 15

Base ten: 2, 4, 6, 8, 10, 12, 14

An important note is that the numeral 10 is a multiple of 2 only when the base is an even number. When the base
is an even number, the units digits of even numbers repeat, so we need only look at the units digit of a number
to determine if it is odd or even. If the units digit is even, the number is even.

If the base is an odd number, the units digit is not enough information to determine if a number is even. In odd
bases, it is the sum of the digits that determines whether a number is even—if the sum is even, the number is
even.

Problem H9.

a. 6Dsixteen = (6 • 16) + 13 = 109ten

b. AEsixteen = (10 • 16) + 14 = 174 ten

c. 9Csixteen = (9 • 16) + 12 = 156 ten

d. 2Bsixteen = (2 • 16) + 11 = 43 ten

Problem H10.

a. 97 = (6 • 16) + 1 = 61sixteen

b. 144 = (9 • 16) = 90 sixteen

c. 203 = (12 • 16) + 11 = CB sixteen

d. 890 = (3 • 256) + 7 • 16 + 10 = 37A sixteen

Solutions, cont’d.
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Notes


