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Unit Overview
Following the example set in the previous unit, we now attempt to

bring principles of physics to bear on the most complex systems of all:

biological systems. Is it possible to describe living systems, or even small

pieces of living systems, with the same concepts developed elsewhere

in our ramble through physics? We begin with a discussion of whether

physics can tell us if something is, in fact, alive. In the reductionist spirit,

we then consider the physical principles that govern the constituent

molecules of biological systems—and their emergent properties. From

DNA and proteins, we move on to evolution and how it is physically

possible for a species to genetically adapt to its environment quickly

enough to survive. Finally, we seek to understand how the conscious

mind can emerge from a network of communicating cells.
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Section 1: Introduction

Biology is complicated, really, really complicated. This should not surprise you if you think that ultimately

the laws of physics explain how the world works, because biological activity is far beyond the usual realm

of simple physical phenomena. It is easy to simply turn away from a true physical explanation of biological

phenomena as simply hopeless. Perhaps it is hopelessly complex at some level of detail. The ghosts of

biological "stamp collecting" are still alive and well and for a good reason.

Figure 1: A population of slime-mold cells forms an aggregate in
response to a signaling molecule.
Source: © Courtesy of BioMed Central Ltc. From: Maddelena Arigoni
et al. "A novel Dictyostelium RasGEF required for chemotaxis and
development," BMC Cell Biology, 7 December 2005.

However, it is possible that in spite of the seemingly hopeless complexity of biology, there are certain

emergent properties that arise in ways that we can understand quantitatively. An emergent property is

an unexpected collective phenomenon that arises from a system consisting of interacting parts. You

could call the phenomenon of life itself an emergent property. Certainly no one would expect to see living

systems arise directly from the fundamental laws of quantum mechanics and the Standard Model that

have been discussed in the first seven units of this course.

The danger is that this concept of "emergent properties" is just some philosophical musing with no

real deeper physics content, and it may be true that the emergent properties of life viewed "bottom

up" are simply too complex in origin to understand at a quantitative level. It may not be possible to

derive how emergent properties arise from microscopic physics. In his book A Different Universe:

Reinventing Physics from the Bottom Down, the physicist Robert Laughlin compares the local movement

of air molecules around an airplane wing to the large-scale turbulent hydrodynamic flow of air around

the airfoil that gives rise to lift. Molecular motion is clearly the province of microscopic physics and
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statistical mechanics, while turbulent flow is an emergent effect. As Laughlin puts it, if he were to discover

that Boeing Aircraft began worrying about how the movement of air molecules collectively generates

hydrodynamics, it would be time to divest himself of Boeing stock. Perhaps the same should have been

said when banks started hiring theoretical physicists to run stock trading code.

In biology, we have a much greater problem than with the airplane, because the air molecules can be

described pretty well with the elegant ideas of statistical mechanics. So, while it is a long stretch to derive

the emergence of turbulence from atomic motion, no one would say it is impossible, just very hard.

Figure 2: Colored smoke marks the hydrodynamic flow around an
aircraft, an emergent phenomenon.
Source: © NASA Langley Research Center (NASA-LaRC).

In biology, even the fundamentals at the bottom may be impossibly hard for physics to model adequately

in the sense of having predictive power to show the pathways of emergent behavior. A classic example is

the signaling that coordinates the collective aggregation of the slime-mold Dictyostelium cells in response

to the signaling molecule cyclic AMP (cAMP). In the movie shown in Figure 1, the individual Dictyostelium

cells signal to each other, and the cells stream to form a fruiting body in an emergent process called

"chemotaxis." This fairly simple-looking yet spectacular process is a favorite of physicists and still not well

understood after 100 years of work.

So, perhaps in a foolhardy manner, we will move forward to see how physics, in the discipline known

as biological physics, can attack some of the greatest puzzles of them all. We will have to deal with

the emergence of collective phenomena from an underlying complex set of interacting entities, like our

Dictyostelium cells. But that seems still within the province of physics: really hard, but physics. But there

are deeper questions that seem to almost be beyond physics.
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Are there emergent physics rules in life?
The amazing array of knowledge in previous units contains little inkling of the complex, varied phenomena

of life. Life is an astonishingly emergent property of matter, full-blown in its complexity today, some

billions of years after it started out in presumably some very simple form. Although we have many

physical ways to describe a living organism, quantifying its state of aliveness using the laws of physics

seems a hopeless task. So, all our tools and ideas would seem to fail at the most basic level of describing

what life is.

Biology has other incredible emergent behaviors that you can hardly anticipate from what you have

learned so far. British physicist Paul Dirac famously said that, "The fundamental laws necessary for the

mathematical treatment of a large part of physics and the whole of chemistry are thus completely known,

and the difficulty lies only in the fact that application of these laws leads to equations that are too complex

to be solved." Our question is: Is the biological physics of the emergent properties of life simply a matter

of impossible complexity, or are there organizing principles that only appear at a higher level than the

baseline quantum mechanics?

So far, we have talked about the emergent nature of life itself. The next astonishing emergent behavior

we'll consider is the evolution of living organisms to ever-higher complexity over billions of years. It is

strange enough that life developed at all out of inanimate matter, in apparent conflict with the Second Law

of Thermodynamics. The original ur-cell, improbable as it is, proceeded to evolve to ever-greater levels of

complexity, ultimately arriving at Homo sapiens several million years ago. Thanks to Darwin and Wallace

and their concept of selection of the fittest, we have a rather vague hand-waving idea of how this has

happened. But the quantitative modeling of evolution as an emergent property remains in its infancy.

The building blocks of evolution

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=second_law_thermo
http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=second_law_thermo
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Figure 3: Molecules of life: RNA (left) and DNA (right).
Source: © Wikimedia Commons, Creative Commons Attribution-
Share Alike 3.0 license. Author: Sponk, 23 March 2010.

Modeling evolution is a difficult task; but nevertheless, we can try. So let's start at the top and work

down. Physicists believe (and it is somewhat more of a belief than a proven fact) that all life began with

some ur-cell and that life evolved from that ur-cell into the remarkable complexity of living organisms

we have today, including Homo sapiens. We will never know what path this evolution took. But the

remarkable unity of life (common genetic code, common basic proteins, and common basic biological

pathways) would indicate that, at its core, the phenomenon of life has been locked in to a basic set of

physical modes and has not deviated from this basic set. At that core, lies a very long linear polymer,

deoxyribonucleic acid (or DNA), which encodes the basic self-assembly information and control

information. A related molecule, ribonucleic acid (RNA), has a different chemical group at one particular

position, and that profoundly changes the three-dimensional structure that RNA takes in space and its

chemical behavior.

Although evolution has played with the information content of DNA, its basic core content, in terms of

how its constituent molecules form a string of pairs, has not obviously changed. And while there is a

general relationship between the complexity of an organism and the length of its DNA that encodes the

complexity, some decidedly simpler organisms than Homo sapiens have considerably longer genomes.

So, from an information perspective, we really don't have any iron-clad way to go from genome to

organismal complexity, nor do we understand how the complexity evolved. Ultimately, of course, life is

matter. But, it is the evolution of information that really lies at the unknown heart of biological physics, and

we can't avoid it.
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The emergence of the mind in living systems

Figure 4: Player C is trying to determine which player—A or B—is a
computer and which is human.
Source: © Wikimedia Commons, Public Domain. Author: Bilby, 25
March 2008.

Biology possesses even deeper emergent phenomena than the evolution of complexity. The writer

and readers of this document are sentient beings with senses of identity and self and consciousness.

Presumably, the laws of physics can explain the emergent behavior of consciousness, which certainly

extends down from Homo sapiens into the "lower" forms of life (although those lower forms of life might

object to that appellation). Perhaps the hardest and most impossible question in all of biological physics

is: What is the physical basis behind consciousness? Unfortunately, that quest quickly veers into the

realm of the philosophical and pure speculation; some would say it isn't even a legitimate physics

question at all.

There is even an argument as to whether "machines," now considered to be computers running a

program, will ever be able to show the same kind of intelligence that living systems such as human

beings possess. Traditional reductionist physicists, I would imagine, simply view the human mind as some

sort of a vastly complicated computational machine. But it is far from clear if this view is correct. The
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mathematician Alan Turing, not only invented the Turing machine, the grandfather of all computers, but

he also asked a curious question: Can machines think? To a physicist, that is a strange question for it

implies that maybe the minds of living organisms somehow have emergent properties that are different

from what a manmade computing machine could have. The answer to Turing's question rages on, and

that tells us that biology has very deep questions still to be answered.

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=turing_machine


Unit 9: Biophysics 8 www.learner.org

Section 2: Physics and Life

Here's a question from a biologist, Don Coffey at Johns Hopkins University: Is a chicken egg in your

refrigerator alive? We face a problem right away: What does being alive actually mean from a physics

perspective? Nothing. The concept of aliveness has played no role in anything you have been taught yet

in this course. It is a perfectly valid biological question; yet physics would seem to have little to say about

it. It is an emergent property arising from the laws of physics, which presumably are capable of explaining

the physics of the egg.

Figure 5: A chicken egg. Is it alive or dead?
Source:

The chicken egg is a thing of elegant geometric beauty. But its form is not critical to its state of aliveness

(unless, of course, you smash it). However, you can ask pertinent physical questions about the state of

the egg to determine whether it is alive: Has the egg been cooked? It's pretty easy to tell from a physics

perspective: Spin the egg around the short axis of the ellipse rapidly, stop it suddenly, and then let it go.

If it starts to spin again, it hasn't been cooked because the yolk proteins have not been denatured by heat

and so remain as a viscous fluid. If your experiment indicates the egg hasn't been cooked it might be

alive, but this biological physics experiment wouldn't take you much closer to an answer.
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Assuming you haven't already broken the egg, you can now drop it. If you were right that it has not been

cooked, the egg will shatter into hundreds of pieces. Is it dead now? If this were your laptop computer,

you could pick up all the pieces and—if you are good enough—probably get it working again. However,

all of the king's horses and all the king's men can't put Humpty Dumpty back together again and make

him alive once more; we don't know how to do it. The egg's internal mechanical structure is very complex

and rather important to the egg's future. It, too, is part of being alive, but surely rather ancillary to the main

question of aliveness.

Aliveness is probably not a yes-no state of a system with a crisp binary answer, but rather a matter of

degree. One qualitative parameter is the extent to which the egg is in thermodynamic equilibrium with its

surroundings. If it is even slightly warmer, then I would guess that the egg is fertilized and alive, because

it is out of thermodynamic equilibrium and radiating more energy than it absorbs. That would imply that

chemical reactions are running inside the egg, maintaining the salt levels, pH, metabolites, signaling

molecules, and other factors necessary to ensure that the egg has a future some day as a chicken.

Wait, the egg has a future? No proton has a future unless, as some theories suggest, it eventually

decays. But if the egg is not dropped or cooked and is kept at exactly the right temperature for the right

time, the miracle of embryonic development will occur: The fertilized nucleus within the egg will self-

assemble in an intricate dance of physical forces and eventually put all the right cells into all the right

places for a chick to emerge. Can the laws of physics ever hope to predict such complex emergent

phenomena?

Emergent and adaptive behavior in bacteria
Here's an explicit example of what we are trying to say about emergent behavior in biology. Let's move

from the complex egg where the chick embryo may be developing inside to the simple example of

bacteria swimming around looking for food. It's possible that each bacterium follows a principle of every

bug for itself: They do not interact with each other and simply try to eat as much food as possible in order

to reproduce in an example of Darwinian competition at its most elemental level. But food comes and

food goes at the bacterial level; and if there is no food, an individual bacterium will starve and not be

able to survive. Thus, we should not be surprised that many bacteria do not exist at the level as rugged

individuals but instead show quite startling collective behavior, just like people build churches.
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Figure 6: Random motion of gas molecules—bottom up.
Source: © Wikimedia Commons, GNU Free Documentation License.
Author: Greg L., 25 August 2006.

If bacteria acted as rugged individuals, then we would expect their movement through space looking for

food to resemble what is called a random walk, which is different from the Brownian motion that occurs

due to thermal fluctuations. In a random walk there is a characteristic step size L, which is how far the

bacterium swims in one direction before it tumbles and goes off randomly in a new direction. Howard Berg

at Harvard University has beautiful videos of this random movement of bacteria. The effect of this random

motion is that we can view individual bacteria rather like the molecules of a gas, as shown in Figure 6. If

that were all there is to bacterial motion, we would be basically done, and we could use the mathematics

of the random walk to explain bacterial motion.

However, bacteria can be much more complicated than a gas when viewed collectively. In the

Introduction, we discussed the chemotaxis of a population of individual Dictyostelium cells in response

to a signal created and received by the collective population of the Dictyostelium cells. Bacteria do the

same thing. Under stress, they also begin signaling to each other in various ways, some quite scary.

For example, if one bacterium mutates and comes up with a solution to the present problem causing the

stress, in a process called "horizontal gene transfer" they secrete the gene and transfer it to their buddies.

Another response is to circle the wagons: The bacteria signal to each other and move together to form

a complex community called a "biofilm." Figure 7 shows a dramatic example of the growth of a complex

biofilm, which is truly a city of bacteria.

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=random_walk
http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=brownian_motion
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Figure 7: Growth of a biofilm of the bacteria Bacillis subtilis over four
days.
Source: © Time-lapse movie by Dr. Remco Kort—published in J.
Bacteroi. (2006) 188:3099-109.

The mystery is how the supposedly simple bacteria communicate with each other to form such a complex

and adapted structure. There is a set of equations, called the "Keller-Segel equations," which are usually

the first steps in trying to puzzle out emergent behavior in a collection of swimming agents such as

bacteria. These equations are not too hard to understand, at least in principle. Basically, they take

the random walk we discussed above and add in the generation and response of a chemoattractant

molecule. A sobering aspect of these equations is that they are very difficult to solve exactly: They are

nonlinear in the density of the bacteria, and one of the great secrets of physics is that we have a very

hard time solving nonlinear equations.

Principles of a complex adaptive system
We are just skimming the surface of a monumental problem in biological physics: How agents that

communicate with each other and adapt to the structures that they create can be understood. A biological

system that communicates and adapts like the film-forming bacteria is an example of a complex adaptive

system. In principle, a complex adaptive system could appear almost anywhere, but biological systems

are the most extreme cases of this general phenomenon.

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=complex_adaptive_system
http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=complex_adaptive_system
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Figure 8: A schematic view of what constitutes a complex adaptive system.
Source: © Wikimedia Commons, Creative Commons Attribution ShareAlike 3.0.

The computer scientist John Holland and the physicist Murray Gell-Mann, who played a major role in the

physics developments you read about in Units 1 through 4, have tried to define what makes a complex

adaptive system. We can select a few of the key properties as presented by Peter Freyer that are most

germane to biological systems:

1. Emergence: We have already discussed this concept, both in this unit and in Unit 8.

2. Co-evolution: We will talk about evolution later. Coevolution refers to how the evolution of one agent
(say a species, or a virus, or a protein) affects the evolution of another related agent, and vice versa.

3. Connectivity: This is concerned with biological networks, which we will discuss later.

4. Iteration: As a system grows and evolves, the succeeding generations learn from the previous ones.

5. Nested Systems: There are multiple levels of control and feedback.

These properties will appear time and again throughout this unit as we tour various complex adaptive

systems in biology, and ask how well we can understand them using the investigative tools of physics.
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Section 3: The Emergent Genome

The challenge of biological physics is to find a set of organizing principles or physical laws that governs

biological systems. It is natural to start by thinking about DNA, the master molecule of life. This super-

molecule that apparently has the code for the enormous complexity seen in living systems is a rather

simple molecule, at least in principle. It consists of two strands that wrap around each other in the famous

double helix first clearly described by physicist Francis Crick and his biologist colleague James Watson.

While the structure of DNA may be simple, understanding how its structure leads to a living organism is

not.

Figure 9: The double helix.
Source: © Wikimedia Commons, Public Domain. Author: brian0918,
22 November 2009.

We will use the word "emergent" here to discuss the genome in the following sense: If DNA simply had

the codes for genes that are expressed in the organism, it would be a rather boring large table of data.

But there is much more to the story than this: Simply knowing the list of genes does not explain the

implicit emergence of the organism from this list. Not all the genes are expressed at one time. There is an

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=genome
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intricate program that expresses genes as a function of time and space as the organism develops. How

this is controlled and manipulated still remains a great mystery.

As Figure 9 shows, the DNA molecule has a helicity, or twist, which arises from the fundamental

handedness, or chirality, of biologically derived molecules. This handedness is preserved by the fact

that the proteins that catalyze the chemical reactions are themselves handed and highly specific in

preserving the symmetry of the molecules upon which they act. The ultimate origin of this handedness is

a controversial issue. But we assume that a right-handed or left-handed world would work equally well,

and that chiral symmetry breaking such as what we encountered in Unit 2 on the scale of fundamental

particles is not present in these macroscopic biological molecules.

It is, however, a mistake to think that biological molecules have only one possible structure, or that

somehow the right-handed form of the DNA double helix is the only kind of helix that DNA can form. It

turns out that under certain salt conditions, DNA can form a left-handed double helix, as shown in Figure

10. In general, proteins are built out of molecules called "amino acids." DNA, itself a protein, contains the

instructions for constructing many different proteins that are built from approximately 20 different amino

acids. We will learn more about this later, when we discuss proteins. For now, we will stick to DNA, which

is made of only four building blocks: the nitrogenous bases adenine (A), guanine (G), cytosine (C), and

thymine (T). Adenine and guanine have a two-ring structure, and are classified as purines, while cytosine

and thymine have a one-ring structure and are classified as pyrimidines. It was the genius of Watson

and Crick to understand that the basic rules of stereochemistry enabled a structure in which the adenine

(purine) interacts electrostatically with thymine (pyrimidine), and guanine (purine) interacts with cytosine

(pyrimidine) under the salt and pH conditions that exist in most biological systems.

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=handedness
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Figure 10: The DNA double helix, in three of its possible configurations.
Source: © Wikimedia Commons, GNU Free Documentation License, Version 1.2. Author: Zephyris (Richard
Wheeler), 4 February 2007.

Not only does the single-stranded DNA (ssDNA) molecule like to form a double-stranded (dsDNA)

complex, but the forces that bring the two strands together result in remarkably specific pairings of the

base pairs: A with T, and G with C. The pyrimidine thymine base can form strong electrostatic links with

the purine adenine base at two locations, while the (somewhat stronger) guanine-cytosine pair relies on

three possible hydrogen bonds. The base pairs code for the construction of the organism. Since there are

only bases in the DNA molecule, and there are about 20 different amino acids, the minimum number of

bases that can uniquely code for an amino acid is three. This is called the triplet codon.

The remarkable specificity of molecular interactions in biology is actually a common and all-important

theme. It is also a physics problem: How well do we have to understand the potentials of molecular

interactions before we can begin to predict the structures that form? We will discuss this vexing problem

a bit more in the protein section, but it remains a huge problem in biological physics. At present, we really

cannot predict three-dimensional structures for biological structures, and it isn't clear if we ever will be

able to given how sensitive the structures are to interaction energies and how complex they are.

An example of this extreme sensitivity to the potential functions and the composition of the polymer

can be found in the difference between ribonucleic acids (RNA) and deoxyribonucleic acids (DNA).

Structurally, the only difference between RNA and DNA is that at the 2' position of the ribose sugar, RNA

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=polymer
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has a hydroxyl (OH) molecule—a molecule with one hydrogen and one oxygen atom—while DNA just

has a hydrogen atom. Figure 11 shows what looks like the completely innocuous difference between the

two fundamental units. From a physicist's bottom-up approach and lacking much knowledge of physical

chemistry, how much difference can that lone oxygen atom matter?

Figure 11: The chemical structure of RNA (left), and the form the folded molecule takes (right).
Source: © Left: Wikimedia Commons, Public Domain. Author: Narayanese, 27 December 2007. Right: Wikimedia
Commons, Public Domain. Author: MirankerAD, 18 December 2009.

Unfortunately for the bottom-up physicist, the news is very bad. RNA molecules fold into a far more

complex structure than DNA molecules do, even through the "alphabet," for the structures are just four

letters: A,C, G, and bizarrely U, a uracil group that Nature for some reason has favored over the thymine

group of DNA. An example of the complex structures that RNA molecules can form is shown in Figure

11. Although the folding rules for RNA are vastly simpler than those for DNA, we still cannot predict with

certainty the three-dimensional structure an RNA molecule will form if we are given the sequence of

bases as a starting point.

The puzzle of packing DNA: chromosomes



Unit 9: Biophysics 17 www.learner.org

Mapping, Sequencing, and Controversy

Since the DNA molecules code for the proteins that are so critical to life, knowing the sequence

of the base pairs is vital to knowing what proteins will be produced. This kind of single base pair

resolution fractionation is key to "sequencing." At a much more coarse level, you might want to

know the basic ordering of various proteins on a strand of DNA; we call this kind of low resolution

"mapping" the DNA. The National Institutes of Health have established a National Center for

Biotechnology Information with the express purpose of trying to centralize all the information pouring

in from sequencing and mapping projects.

The sequencing and mapping of the human genome has been a huge national and private effort,

and a very contentious one based upon the raft of ethical, legal, and social implications. The Human

Genome Initiative was an astonishing success. However, one school of thought posits that the effort

was partly (or maybe mostly) successful because of the efforts of a rival private program headed by

entrepreneur Craig Venter, which used a different but complementary approach.

Let's consider a simpler problem than RNA folding: packaging DNA in the cell. A gene is the section of

DNA that codes for a particular protein. Since an organism like the bacterium Escherichia coli contains

roughly 4,000 different proteins and each protein is roughly 100 amino acids long, we would estimate that

the length of DNA in E. coli must be about 2 million base pairs long. In fact, sequencing shows that the

E. coli genome actually consists of 4,639,221 base pairs, so we are off by about a factor of two, not too

bad. Still, this is an extraordinarily long molecule. If stretched out, it would be 1.2 mm in length, while the

organism itself is only about 1 micron long.

The mathematics of how DNA actually gets packaged into small places, and how this highly packaged

polymer gets read by proteins such as RNA polymerases or copied by DNA polymerases, is a fascinating

exercise in topology. Those of you who are fishermen and have ever confronted a highly tangled fishing

line can appreciate that the packaging of DNA in the cell is a very nontrivial problem.

The physics aspect to this problem is the stiffness of the double helix, and how the topology of the twisted

and folded molecule affects its biological function. How much energy does it take to bend or twist the

polymer into the complex shapes necessary for efficient packaging of DNA in a cell? And how does the

intrinsic twist of the double helix translate into the necessity to break the double helix and reconnect it



Unit 9: Biophysics 18 www.learner.org

when the code is read by proteins? In other words, biological physics is concerned with the energetics of

bending DNA and the topological issues of how the DNA wraps around in space.

The incredible length of a DNA molecule, already bad enough for bacteria, gets more outrageous for

higher organisms. Most mammals have roughly 3 x 109 base pairs wrapped up into chromosomes,

which are very complex structures consisting of proteins and nucleic acids. However, although we

view ourselves as being at the peak of the evolutionary ladder, there seems to be much more DNA in

organisms we view as our intellectual inferiors: Some plants and amphibians have up to 1011 base pairs!

If we laid out the DNA from our chromosomes in a line, it would have a length of approximately 1 meter;

that of amphibians would stretch over 30 meters!

Dark matter in the genome
Why is the human DNA genome so long, and other genomes even longer still? We don't know exactly

how many genes the human genome contains, but a reasonable guess seems to indicate about 30,000.

If we imagine that each gene codes for a protein that has about 100 amino acids, and that three base

pairs are required to specify each amino acid, the minimal size of the human genome would be about

107 base pairs. It would seem that we have at least 1,000 times as much DNA as is necessary for coding

the genome. Clearly, the amount of "excess" DNA must be much higher for plants and amphibians.

Apparently, the DNA is not efficiently coded in the cell, in the sense that lots of so-called "junk" DNA

floats around in a chromosome. In fact, a large amount of noncoding DNA has a repeating motif. Despite

some guesses about what role this DNA plays, its function remains a substantial puzzle. Perhaps the

information content of the genome is not just the number of base pairs, but that there is much "hidden"

information contained in this dark genome.

We have succeeded in sequencing the coding part of the human genome, but not the dark part. Are

we done now that we know the coding sequence of one given individual? Hardly. We don't know how

to extract the information content of the genome at many levels, or even how to define the genome's

information quantitatively. The concept of "information" is not only a tricky concept, but also of immense

importance in biological physics. Information is itself an emergent property in biology, and it is contextual:

The environment gives meaning to the information, and the information itself means little without the

context of the environment.
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One problem is that we don't know how to measure information in the genome. Paradoxically, information

to a physicist is related to entropy, which is a quantitative measure of disorder. The lower the entropy, the

higher the information content. We do, however, need to be careful how we define entropy, because the

standard equation in undergraduate physics courses does not apply to a string of base pairs.

Different meanings of information

Figure 12: This sequence logo is a compact way of displaying
information contained in a piece of genetic material.
Source: © P. P. Papp, D. K. Chattoraj, and T. D. Schneider,
Information Analysis of Sequences that Bind the Replication Initiator
RepA, J. Mol. Biol., 233, 219-230, 1993.

The introduction of entropy emphasizes a critical point: Information has a different meaning to a biologist

than it does to a physicist. Suppose you look at some stretch of the genome, and you find that all four of

the bases are present in roughly equal numbers—that is, a given base pair has a 25 percent chance to

be present in the chain. To a biologist, this implies the sequence is coding for a protein and is information-

rich. But a physicist would say it has high entropy and low information, somewhat like saying that it

may or may not rain tomorrow. If you say it will rain tomorrow, you convey a lot of information and very

little obvious entropy. The opposite is true in gene sequences. To a biologist, a long string of adenines,

AAAAAAAAAAAA, is useless and conveys very little information; but in the physics definition of entropy,

this is a very low entropy state. Obviously, the statistical concepts of entropy and the biological concepts

of information density are rather different.

The dark matter that makes up a huge fraction of the total genome is still very much terra incognito.

Entropy density maps indicate that it has a lower information density (in the biologist's use of the word)

than the "bright matter" coding DNA. Unraveling the mysteries of the dark matter in the genome will

challenge biologists just as much as exploring the cosmological variety challenges astrophysicists.

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=entropy
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Section 4: Proteins

Having explored the emergent genome in the form of DNA from a structural and informational

perspective, we now move on to the globular polymers called "proteins," the real molecular machines

that make things tick. These proteins are the polymers that the DNA codes and are the business end

of life. They regulate the highly specific chemical reactions that allow living organisms to live. At 300 K

(80°F), the approximate temperature of most living organisms, life processes are characterized by tightly

controlled, highly specific chemical reactions that take place at a very high rate. In nonliving matter, highly

specific reactions tend to proceed extremely slowly. This slow reaction rate is another result of entropy,

since going to a highly specific reaction out of many possible reactions is extremely unlikely. In living

systems, these reactions proceed much faster because they are catalyzed by biological proteins called

enzymes. It is the catalysis of very unlikely chemical reactions that is the hallmark of living systems.

Figure 13: The enzyme on the left has a much easier time reading
DNA than the enzyme on the right due to structural details that are
difficult to predict from first principles.
Source: © RCSB Protein Data Bank.

The mystery of how these protein polymers do their magical chemical catalysis is basically the domain of

chemistry, and we won't pursue it further here. As physicists, we will turn our attention to the emergent

structure of biological molecules. We saw in the previous section how DNA, and its cousin RNA, have a

relatively simple structure that leads, ultimately, to the most complex phenomena around. In this section,

we will ask whether we can use the principles of physics to understand anything about how the folded

structure of proteins, which is incredibly detailed and specific to biological processes, arises from their

relatively simple chemical composition.

Proteins: the emergence of order from sequence

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=catalyzed
http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=enzymes
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As polymers go, most proteins are relatively small but much bigger than you might expect is necessary.

A typical protein consists of about 100 to 200 monomer links; larger polymers are typically constructed

of subunits consisting of smaller balls of single chains. For example, the protein RNA polymerase, which

binds to DNA and creates the single-strand polymer RNA, consists (in E. coli) of a huge protein with

about 500,000 times the mass of a hydrogen atom, divided into five subunits. Despite their small size,

folded proteins form exceedingly complex structures. This complexity originates from the large number

of monomer units from which the polymers are formed: There are 21 different amino acids. We saw that

RNA could form quite complex structures from a choice of four different bases. Imagine the complexity of

the structures that can be formed in a protein if you are working with a choice of 21 of them.

Figure 14: As polarized light passes through corn syrup, which is full of right-handed sugar molecules, its plane of
polarization is rotated.
Source: © Technical Services Group, MIT Department of Physics.

Note that you can assign a handedness to the bonding pattern within the protein: Some proteins are left-

handed, and others are right-handed. Experimentally, it was observed that naturally occurring biological

molecules (as opposed to molecules synthesized in the laboratory) could rotate the plane of polarization

of light when a beam of light is passed through a solution of the molecule. It is easy to see this by getting

some maple syrup from a store and observing what happens when a polarized laser beam passes

through it. First, orient an "analyzing" polarizer so that no laser light passes through it. Then put the syrup

in the laser's path before the analyzing polarizer. You will notice that some light now passes through the

polarizer. The beam polarization (as you look at it propagating toward you) has rotated counterclockwise,

or in a right-handed sense using the right-hand rule. The notation is that the sugar in the syrup is dextro-

rotary (D-rotary), or right-handed. In the case of the amino acids, all but one are left-handed, or L-rotary.

Glycine is the one exception. It has mirror symmetry.

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=monomer
http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=polarization
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We know how to denote the three-dimensional structure of a protein in a rather concise graphical form.

But when you actually see the space-filling picture of a protein—what it would look like if you could see

something that small—your physicist's heart must stop in horror. It looks like an ungodly tangled ball. Who

in their right mind could possibly be interested in this unkempt beast?

Figure 15: The structure of myoglobin (left) and the form it actually takes in space (right).
Source: © Left: Wikimedia Commons, Public Domain. Author: AzaToth, 27 February 2008; right: Wikimedia Commons
Creative Commons Attribution-Share Alike 3.0 Unported License. Author: Thomas Splettstoesser, 10 July 2006.

We can say some general things about protein structure. First, the nearest-neighbor interactions are

not totally random; they often show a fair amount of order. Experiments have revealed that nature uses

several "motifs" in forming a globular protein, roughly specified by the choice of amino acids which

naturally combine to form a structure of interest. These structures, determined primarily by nearest-

neighbor interactions, are called "secondary structures." We commonly see three basic secondary

structures: the -helix, the -strand (these combine into sheets), and the polyproline helix.

We can now begin to roughly build up protein structures, using the secondary structures as building

blocks. For example, one of my favorite proteins is myoglobin because it is supposed to be simple. It

is not. We can view it as basically a construction of several alpha helices which surround a "prosthetic

group," the highly conjugated heme structure used extensively in biology. Biologists often regard
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myoglobin as a simple protein. One possible function is to bind oxygen tightly as a storage reservoir in

muscle cells. There may be much more to this molecule than meets the eye, however.

As their name indicates, globular proteins are rather spherical in shape. Also, the polarizability of the

various amino acids covers quite a large range, and the protein is designed (unless it is membrane-

bound) to exist in water, which is highly polar. As biologists see it, the polarizable amino acids are

predominantly found in the outer layer of the globular protein, while the non-polar amino acids reside

deep in the interior. This arrangement is not because the non-polar amino acids have a strong attraction

for one another, but rather because the polar amino acids have strong interactions with water (the so-

called hydrophilic effect) and because introducing non-polar residues into water gives rise to a large

negative entropy change (the so-called hydrophobic effect). So, physics gives us some insight into

structure, through electrostatic interactions and entropy.

Figure 16: A schematic of how minimizing the free energy of a
molecule could lead to protein folding.
Source:

One kind of emergence we wish to stress here is that, although you would think that a polymer consisting

of potentially 21 different amino acids for each position would form some sort of a glue-ball, it doesn't.

Many proteins in solution seem to fold into rather well-defined three-dimensional shapes. But can we

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=polarizability
http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=polar
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predict these shapes from the amino acid sequence? This question is known as the "protein-folding

problem," and has occupied many physicists over the past 30 some years as they attempt with ever-

increasingly powerful computers to solve it. While Peter Wolynes and Jose Onuchich have been able to

sketch out some powerful ideas about the general path of the protein folding that make use of the physics

concept of free energy, it could well be that solving the puzzle to a precise answer may be impossible.

There may well be a fundamental reason why a precise answer to the folding problem is impossible:

because in fact there may be no precise answer! Experiments by Hans Frauenfelder have shown that

even for a relatively simple protein like the myoglobin presented in Figure 16, there is not a unique ground

state representing a single free energy minimum but rather a distribution of ground states with the same

energy, also known as a conformation distribution, which are thermally accessible at 300 K. It is becoming

clear that this distribution of states is of supreme importance in protein function, and that the distribution

of conformations can be quite extreme; the "landscape" of conformations can be extremely rugged; and

within a given local valley, the protein cannot easily move over the landscape to another state. Because

of this rugged landscape, a protein might often be found in metastable states: trapped in a low-lying state

that is low, but not the lowest, unable to reach the true ground state without climbing over a large energy

barrier.

Figure 17: Two possible conformations of a prion protein: on the left
as a beta sheet; on the right as an alpha helix.
Source: © Flickr, Creative Commons License. Author: AJC1, 18 April
2007.

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=ground_state
http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=ground_state
http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=conformation_distribution
http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=metastable
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An extreme example of this inherent metastability of many protein structures, and the implication to

biology, is the class of proteins called "prions." These proteins can fold into two different deep valleys of

free energy: as an alpha-helix protein rather like myoglobin, or as a beta-sheet protein. In the alpha-helix

conformation, the prion is highly soluble in water; but in the beta-sheet conformation, it tends to aggregate

and drop out of solution, forming what are called "amyloid plaques," which are involved with certain forms

of dementia. One energy valley leads to a structure that leads to untreatable disease; the other is mostly

harmless.

The apparent extreme roughness of biological landscapes, and the problems of ascertaining dynamics on

such landscapes, will be one of the fundamental challenges for biological physics and the subject of the

next section.
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Section 5: Free Energy Landscapes

A certified unsolved problem in physics is why the fundamental physical constants have the values

they do. One of the more radical ideas that has been put forward is that there is no deeper meaning.

The numbers are what they are because an unaccountable number of alternate universes are forming

a landscape of physical constants. We just happen to be in a particular universe where the physical

constants have values conducive to form life and eventually evolve organisms who ask such a question.

This idea of a landscape of different universes actually came from biology, evolution theory, in fact,

and was first applied to physics by Lee Smolin. Biology inherently deals with landscapes because

the biological entities, whether they are molecules, cells, organisms, or ecologies, are inherently

heterogeneous and complex. Trying to organize this complexity in a systematic way is beyond

challenging. As you saw in our earlier discussion of the protein folding problem, it is easiest to view the

folding process as movement on a free energy surface, a landscape of conformations.

Glasses, spin glasses, landscapes
There is a physical system in condensed matter physics that might provide a simpler example of the kind

of landscape complexity that is characteristic of biological systems. Glasses are surprisingly interesting

physical systems that do not go directly to the lowest free energy state as they cool. Instead, they remain

frozen in a very high entropy state. For a physical glass like the windows of your house, the hand-waving

explanation for this refusal to crystallize is that the viscosity becomes so large as the system cools, that

there is not enough time in the history of the universe to reach the true ground state.

Figure 18: As a glass cools, the viscosity increases so rapidly that
the atoms get frozen in a disordered state.
Source: © OHM Equipment, LLC.



Unit 9: Biophysics 27 www.learner.org

A more interesting glass, and one more directly connected to biology, is the spin glass. It actually

has no single ground state, which may be true for many proteins as well. The study of spin glasses in

condensed matter physics naturally brings in the concepts of rough energy landscapes, similar to those

we discussed in the previous section. The energy landscape of a spin glass is modified by interactions

within the material. These interactions can be both random and frustrated, an important concept that

we will introduce shortly. By drawing an analogy between spin glasses and biological systems, we can

establish some overriding principles to help us understand these complex biological structures.

A spin glass is nothing more than a set of spins that interact with each other in a certain way. At the

simplest level, a given spin can be pointing either up or down, as we saw in Unit 6; the interaction

between two spins depends on their relative orientation. The interaction term Jij specifies how spin i

interacts with spin j. Magically, it is possible to arrange the interaction terms between the spins so that

the system has a large set of almost equal energy levels, rather than one unique ground state. This

phenomenon is called "frustration."

Figure 19: This simple system of three spins is frustrated, and has no
clear ground state.
Source:

For a model spin glass, the rule that leads to frustration is very simple. We simply set the interaction term

to be +1 if the two spins point in the same direction, and -1 if they point in different directions. If you go

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=energy_landscape
http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=frustrated
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around a closed path in a given arrangement of spins and multiply all the interaction terms together, you

will find that if the number is +1, the spins have a unique ground state; and if it is -1, they do not. Figure

19 shows an example of a simple three-spin system that is frustrated. The third spin has contradictory

commands to point up and point down. What to do? Note that this kind of a glass is different from the

glass in your windows, which would find the true ground state if it just had the time. The spin glass has no

ground state, and this is an emergent property.

Frustration arises when there are competing interactions of opposite signs at a site, and implies that

there is no global ground energy state but rather a large number of states with nearly the same energy

separated by large energy barriers. As an aside, we should note that this is not the first time we've

encountered a system with no unique ground state. In Unit 2, systems with spontaneously broken

symmetry also had many possible ground states. The difference here is that the ground states of the

system with broken symmetry were all connected in field space—on the energy landscape, they are

all in the same valley—whereas the nearly equal energy levels in a frustrated system are all isolated in

separate valleys with big mountains in between them. The central concept of frustration is extremely

important in understanding why a spin glass forms a disordered state at low temperatures, and must play

a crucial role in the protein problem as well.

Hierarchical states

Figure 20: A Rubik's Cube is a familiar example of a hierarchical
distribution of states.
Source: © Wikimedia Commons, GNU Free Documentation License
1.2. Author: Lars Karlsson (Keqs), 5 January 2007.
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Take a look at a Rubik's cube. Suppose you have some random color distribution, and you'd like to go

back to the ordered color state. If you could arbitrarily turn any of the colored squares, going back to the

desired state would be trivial and exponentially quick. However, the construction of the cube creates large

energy barriers between states that are not "close" to the one you are in; you must pass through many

of the allowed states in some very slow process in order to arrive where you want to be. This distribution

of allowed states that are close in "distance" and forbidden states separated by a large distance is

called a hierarchical distribution of states. In biology, this distance can mean many things: how close

two configurations of a protein are to each other, or in evolution how far two species are apart on the

evolutionary tree. It is a powerful idea, and it came from physics.

To learn anything useful about a hierarchy, you must have some quantitative way to characterize the

difference between states in the hierarchy. In a spin glass, we can do this by calculating the overlap

between two states, counting up the number of spins that are pointing the same way, and dividing by

the total number of spins. States that are similar to one another will have an overlap close to one, while

those that are very different will have a value near zero. We can then define the "distance" between two

states as one divided by the overlap; so states that are identical are separated by one unit of distance,

and states that are completely different are infinitely far apart.

Figure 21: Here, we see two possible paths across an energy
landscape strewn with local minima.
Source:

Knowing that the states of a spin glass form a hierarchy, we can ask what mathematical and biological

consequences this hierarchy has. Suppose we ask how to pass from one spin state to another. Since

the spins interact with one another, with attendant frustration "clashes" occurring between certain

configurations, the process of randomly flipping the spins hoping to blunder into the desired final state

is likely to be stymied by the high-energy barriers between some of the possible intermediate states.

A consistent and logical approach would be to work through the hierarchical tree of states from one
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state to another. In this way, one always goes through states that are closely related to one another and

hence presumably travels over minimum energy routes. This travel over the space is movement over a

landscape. In Figure 21, we show a simulated landscape, two different ways that system might pick its

way down the landscape, and the local traps which can serve as metastable sticking points.

In some respects, this landscape picture of system dynamics is more descriptive than useful to the central

problems in biological physics that we are discussing in this course. For example, in the protein section,

we showed the staggering complexity of the multiple-component molecular machines that facilitate the

chemical reactions taking place within our bodies, keeping us alive. The landscape movement we have

described so far is driven by pre-existing gradients in free energy, not the time-dependent movement of

large components. We believe that what we observe there is the result of billions of years of evolution and

the output of complex biological networks.
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Section 6: Evolution

Biological evolution remains one of the most contentious fields to the general public, and a dramatic

example of emergent phenomena. We have been discussing the remarkable complexity of biology,

and it is now natural to ask: How did this incredible complexity emerge on our planet? Perhaps a quote

from French Nobel Laureate biologist Jacques Monod can put things into perspective: "Darwin's theory

of evolution was the most important theory ever formulated because of its tremendous philosophical,

ideological, and political implications." Today, over 150 years after the publication of "On the Origin of the

Species," evolution remains hotly debated around the world, but not by most scientists. Even amongst

the educated lay audience, except for some cranks, few have doubt about Newton's laws of motion or

Einstein's theories of special and general relativity, but about half of the American public don't agree with

Darwin's theory of evolution. Surely, physics should be able to clear this up to everybody's satisfaction.

Figure 22: The variation in Galapagos finches inspired Charles
Darwin's thinking on evolution, but may evolve too fast for his theory.
Source: © Public Domain from The Zoology of the Voyage of H.M.S.
Beagle, by John Gould. Edited and superintended by Charles Darwin.
London: Smith Elder and Co., 1838.

Or maybe not. The problem is that simple theories of Darwinian evolution via random mutations and

natural selection give rise to very slow change. Under laboratory conditions, mutations appear at the

low rate of one mutated base pair per billion base pairs per generation. Given this low observed rate of

mutations, it becomes somewhat problematic to envision evolution via natural selection moving forward to

complex organisms such as humans. This became clear as evolution theories tried to move from Darwin's

vague and descriptive anecdotes to a firmer mathematical foundation.
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Recent work on the Galapagos Islands by the Princeton University biologists Peter and Rosemary Grant

revealed something far more startling than the slow evolution of beak sizes. The Grants caught and

banded thousands of finches and traced their elaborate lineage, enabling them to document the changes

that individual species make in reaction to the environment. During prolonged drought, for instance,

beaks may become longer and sharper, to reach the tiniest of seeds. Here is the problem: We are talking

about thousands of birds, not millions. We are talking about beaks that change over periods of years, not

thousands of years. How can evolution proceed so quickly?

Fitness landscapes and evolution
In our protein section, we discussed the concept of a free energy landscape. This indicates that proteins

do not sit quietly in a single free energy minimum, but instead bounce around on a rough landscape of

multiple local minima of different biological functional forms. But this idea of a complex energy landscape

did not originate from proteins or spin glasses. It actually came from an American mathematical biologist

named Sewall Wright who was trying to understand quantitatively how Darwinian evolution could give rise

to higher complexity—exactly the problem that has vexed so many people.

Figure 23: Natural selection can be viewed as movement on a fitness landscape.
Source: © Wikimedia Commons, Public Domain. Author: Wilke, 18 July 2004.

We can put the problem into simple mathematical form. Darwinian evolution is typically believed to

be due to the random mutation of genes, which occurs at some very small rate of approximately 10-9

mutations/base pair-generation under laboratory conditions. At this rate, a given base pair would undergo

a random mutation every billion generations or so. We also believe that the selection pressure—a

quantitative measure of the environmental conditions driving evolution—is very small if we are dealing
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with a highly optimized genome. The number of mutations that "fix," or are selected to enter the genome,

is proportional to the mutation rate times the selection pressure. Thus, the number of "fixed" mutations

is very small. A Galapagos finch, a highly evolved creature with a genome optimized for its environment,

should not be evolving nearly as rapidly as it does by this formulation.

There is nothing wrong with Darwin's original idea of natural selection. What is wrong is our assumption

that the mutation rate is fixed at 10-9 mutations/base-pair generation, and more controversially perhaps

that the mutations occur at random on the genome, or that evolution proceeds by the accumulation of

single base-pair mutations: Perhaps genomic rearrangements and basepair chemical modifications (a

process called "epigenetics") are just as important. Further, we are beginning to understand the role of

ecological complexity and the size of the populations. The simple fitness landscape of Figure 23 is a vast

and misleading simplification. Even in the 1930s, Seawall Wright realized that the dynamics of evolution

had to take into account rough fitness landscapes and multiple populations weakly interbreeding across

a rough landscape. Figure 24 dating all the way back to 1932, is a remarkably prescient view of where

evolution biological physics is heading in the 21st century.

http://physics.digitalgizmo.com/courses/physics/glossary/definition.html?invariant=fitness_landscape
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Figure 24: Sewall Wright sketched the path different populations might take on the fitness landscape.
Source: © Sewall Wright, "The Role of Mutation, Inbreeding, Crossbreeding, and Selection in Evolution," Sixth
International Congress of Genetics, Brooklyn, NY: Brooklyn Botanical Garden, 1932.

Darwinian evolution in a broader sense is also changing the face of physics as the fundamental concepts

flow from biology to physics. Darwinian evolution as modified by recent theories teaches us that it is

possible to come to local maxima in fitness in relatively short time frames through the use of deliberate

error production and then natural selection amongst the errors (mutants) created. This seems somewhat

counterintuitive, but the emergence of complexity from a few simple rules and the deliberate generation

of mistakes can be powerfully applied to seemingly intractable problems in computational physics.

Applications of Darwinian evolution in computational physics have given rise to the field of evolutionary

computing. In evolutionary computing, principles taken from biology are explicitly used. Evolutionary

computation uses the same iterative progress that occurs in biology as generations proceed, mutant

individuals in the population compete with other members of the population in a guided random search
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using parallel processing to achieve the increase in net fitness. To be more specific, the steps required for

the digital realization of a genetic algorithm are:

1. A population of digital strings encode candidate solutions (for example, a long, sharp beak) to an
optimization problem (needing to adapt to drought conditions).

2. In each generation, the fitness of every string is evaluated, and multiple strings are selected based
on their fitness.

3. The strings are recombined and possibly randomly mutated to form a new population.

4. Re-iterate the next generation.

It is possible that by exploring artificial evolution, which came from biology and moved into physics, that

we will learn something about the evolutionary algorithms running in biology and the information will flow

back to biology.

Evolution and Understanding Disease in the 21st Century
The power influence of evolution is felt in many areas of biology, and we are beginning to understand that

the origins of many diseases, most certainly cancer, may lie in evolution and will not be controlled until we

understand evolution dynamics and history much better than we do today. For example, shark cartilage

is one of the more common "alternative medicines" for cancer. Why? An urban legend suggests that

sharks do not get cancers. Even if sharks have lower incidence rates of cancer than Homo sapiens, they

possess no magic bullet to prevent the disease. However, sharks possess an important characteristic

from an evolution perspective: They represent an evolutionary dead-end. Judging from the fossil record,

they have evolved very little in 300 million years, and have not attempted to scale the fitness landscape

peaks that the mammals eventually conquered.

Figure 25: Cartilage from the fin of the Mako shark.
Source: © www.OrangeBeach.ws.
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We can ask two questions based on what we have developed here: Is cancer an inevitable consequence

of rapid evolution, and in that sense not a disease at all but a necessary outlier tail of rapid evolution?

And is cancer, then, inevitably connected with high evolution rates and high stress conditions and thus

impossible to "cure"?
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The Prisoner's Dilemma and Evolution

The prisoner's dilemma is a problem in game theory that links cooperation, competition, options, and

decision-making in an uncertain environment. Devised by RAND staffers Merrill Flood and Melvin

Dresher and formalized by Princeton mathematician Albert Tucker, it involves two suspects for a

crime whom police are interrogating separately. Lacking evidence to convict the pair, the police

use the incentive of getting out of jail free—or early—to persuade each prisoner to confess and

implicate the other. If just one prisoner confesses, he goes free and his partner in crime receives the

maximum sentence. If both confess, they will serve half the maximum time. But if both stay silent,

each will serve a short stretch for a minor offense.

The dilemma stems from the fact that neither prisoner knows what option the other will choose.

By confessing, a prisoner will definitely avoid the maximum sentence. He might avoid serving

time altogether; but he might also spend half the maximum inside. If both prisoners say nothing,

however, they would serve only minor time.

As with game theory prisoners, so it is with evolutionary biology. A species under stress can stand

pat. Or it can mutate—a process that can lead either to death or vibrant new life.

Stress no doubt drives evolution forward, changing the fitness landscapes we have discussed from a

basically smooth, flat, and boring plane into a rugged landscape of deep valleys and high peaks. Let us

assume that in any local habitat or ecology is a distribution of genomes that includes some high-fitness

genomes and some low-fitness genomes. The low-fitness genomes are under stress, but contain the

seeds for evolution. We define stress here as something that either directly generates genomic damage,

such as ionizing radiation and chemicals that directly attack DNA, viruses, or something that prevents

replication of the genome, such as blockage of DNA polymerases or of the topological enzymes required

for chromosome replication. Left unchallenged, all these stress inducers will result in the extinction of the

quasi-species.

This is the business end of the grand experiment in exploring local fitness peaks and ultimately in

generating resistance to stress. The system must evolve in response to the stress, and it must do this

by deliberately generating genetic diversity to explore the fitness landscape—or not. Viewed in the

perspective of game theory's prisoner's dilemma (see sidebar), the silent option under stress is not to

evolve—to go down the senescent pathway and thus not attempt to propagate. Turning on mutational
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mechanisms, in contrast, is a defection, in the sense that it leads potentially to genomes which can

propagate even in what should be lethal conditions and could, in principle, lead to the destruction of

the organism: disease followed by death, which would seem to be very counterproductive. But it may

well be a risk that the system is willing to make. If ignition of mutator genes and evolution to a new

local maximum of fitness increases the average fitness of the group, then the inevitable loss of some

individuals whose genome is mutated into a fitness valley is an acceptable cost.
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Section 7: Networks

The complex biological molecules we have spent the previous sections trying to understand are the

building blocks of life, but it is far from obvious to put these building blocks together into a coherent whole.

Biological molecules, as well as cells and complete organisms, are organized in complex networks. A

network is defined as a system in which information flows into nodes, is processed, and then flows back

out. The network's output is a function of both the inputs and a series of edges that are the bidirectional

paths of information flow between the nodes. The theory and practice of networks is a vast subject, and

with one ultimate goal of understanding that greatest of mysteries, the human brain. We will return to the

brain and its neural networks in the next section. For now, we will discuss the more prosaic networks in

living organisms, which are still complex enough to be very intimidating.

It isn't obvious when you look at a cell that a network exists there. The cytoplasm of a living cell is a very

dynamic entity, but at least at first glance seems to basically be a bag of biological molecules mixed

chaotically together. It is somewhat of a shock to realize that this bag of molecules actually contains a

huge number of highly specific biological networks all operating under tight control. For example, when

an epithelial cell moving across a substrate, patterns of specific molecules drive the motion of the cell's

internal skeleton. When these molecules are tagged with a protein that glows red, displaying the collective

molecular motion under a microscope, a very complex and interactive set of networks appears.
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Figure 26: The circuit diagram (top), bacterial population (center), and plot of the dynamics (bottom) of the
repressilator, an example of a simple synthetic biological network.
Source: © Top: Wikimedia Commons, Public Domain. Author: Timreid, 26 February 2007. Center and bottom:
Reprinted by permission from Macmillan Publishers Ltd: Nature 403, 335-338 (20 January 2000).

The emergent network of the cytoplasm is a system of interconnected units. Each unit has at least an

input and an output, and some sort of a control input which can modulate the relationship between the

input and the output. Networks can be analog, which means that in principle the inputs and outputs

are continuous functions of some variable; or they can be digital, which means that they have finite

values, typically 1 or 0 for a binary system. The computer on which this text was typed is a digital network

consisting of binary logic gates, while the person who typed the text is an analog network.

There are many different kinds of biological networks, and they cover a huge range of length scales, from

the submicron (a micron is a millionth of a meter) to the scales spanning the Earth. Outside of neural

networks, the most important ones are (roughly in order of increasing abstraction):
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1. Metabolite networks: These networks control how a cell turns food (in the form of sugar) into energy
that it can use to function. Enzymes (proteins) are the nodes, and the smaller molecules that
represent the flow of chemical energy in the cell are the edges.

2. Signal transduction networks: These networks transfer information from outside the cell into its
interior, and translate that information into a set of instructions for activity within the cell. Proteins are
the nodes, typically proteins called kineases, and diffusible small signaling molecules which have
been chemically modified are the edges. This is a huge class of networks, ranging from networks
that process sensory stimuli to chemical inputs such as hormones.

3. Transcriptional regulatory networks: These networks determine how genes are turned on and off (or
modulated).

4. Interorganism networks: This is a very broad term that encompasses everything from the
coordinated behavior of a group of bacteria to complex ecologies. The nodes are individual cells,
and the edges are the many different physical ways that cells can interact with each other.

There are probably fundamental network design principles that must be obeyed independent of their

biological or manmade (which is still biological) origin if the network is to be stable to perturbations.

Instability in a network is not generally viewed as a good thing, although there are exceptions to this rule.

For example, the aerodynamics of most modern fighter jets makes the plane inherently unstable. This

sounds like a very bad thing, except that it makes the fighter extremely adaptive to direction changes.

Modern computers can constantly monitor and instantaneously correct the instability, so we end up with

aircraft that are far more maneuverable—and thus more effective fighters—than the ordinary, stable

variety.

The kind of stability issues the fighter jet and other similar networks face are deterministic, and can be

modeled by ordinary differential equations that are straightforward to write down. One might then imagine

designing a network based on a set of these equations. One of the pioneering exercises in designing

"from scratch" was the work of Elowitz and Leibler of an oscillating gene expression pattern. It is sobering

to understand the depth of understanding that was necessary to have made this simple oscillator work.

For an electrical engineer, it is straightforward to design an oscillator following some basic rules of

electromagnetism. However, in a biological network, the parameters are much less cleanly defined.

Despite the inherent challenges, we now have a basic set of biological modules that is being developed

in the new field of "synthetic biology," which is a mix of physics, engineering, and biology that exploits our

knowledge of networks to design new functional biological "circuits." Figure 27 shows an example of a

biological "film" consisting of bacteria. To do this, a gene was inserted into E. coli that coded for a protein

that causes the bacteria to make a black pigment. The pigment production was coupled to a light sensor,
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so that pigment would be made only in the dark. The group used stencils to pattern light exposure and

produce bacterial photography.

Figure 27: Portrait of the University of Texas at Austin (UT Austin)/University of California, San Francisco (UCSF)
Synthetic Biology team. The left panel shows the projected image of the students and professors from UT Austin and
UCSF who participated in the project, and the right panel shows the resulting bacterial photo.
Source: © Aaron Chevalier and the University of Texas at Austin.

In addition to deterministic stability issues in biological networks, there is also the issue of stability in the

presence of noise. For example, at the macro-scale, the sensory network of the dog's nose is about a

million times more sensitive than a human noise. Despite this extreme sensitivity, the dog nose is not

overwhelmed by the presence of an enormous background of other molecules. That is, the dog nose

sensory network is extremely good at noise rejection. At the micro-scale of the single cell, the very finite

number of molecules actually involved in the network node edges leads to statistical noise that can either

confound the network's stability or increase its sensitivity. The dog has clearly resolved this issue to its

benefit, but it remains a problem in the design of synthetic biological networks.

The obvious end goal of synthetic biology could be something truly astonishing: synthetic life. The key to

synthetic life, if it is indeed achieved, will be our ability to harness biological networks. So far, scientists

have synthesized genetic material and other important biological molecules from scratch, but have not

put the pieces together into a complete living organism. The feat hailed by the media as the so-called

creation of a "new form of life" by Craig Venter is something of a misnomer. While Venter's synthesis of a

functional bacterial chromosome of one million base pairs was a fantastic technical achievement, it is very

far from synthetic life, as the new chromosome was inserted into an already functioning cell consisting

of a enormous collection of interacting networks, which we neither can understand nor can reproduce.

Until we can understand the emergence of life from the networks of biology, we will remain very far from

achieving synthetic life.
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Section 8: The Emergence of the Mind

So far, we have wrestled with the structural diversity of proteins and its relationship to the free energy

landscape, and we have tried to find some of the unifying and emergent properties of evolution that

might explain the diversity of life and the increase in complexity. We have also taken a look at how the

biological networks necessary to bind a collection of inanimate objects into a living system emerge. At the

highest level lies the greatest mystery of biological physics: the emergence of the mind from a collection

of communicating cells.

Figure 28: Ruby-throated hummingbird.
Source: © Steve Maslowski, U.S. Fish and Wildlife Service.

We started our discussion of biological physics by considering a chicken egg. Birds lay eggs, so let's

consider a bird: the ruby-throated hummingbird presented in all its glory in Figure 28. About 7 cm

long and weighing about 5 grams, this bird is capable of some rather amazing biophysical things. Its

wings beat about 50 times each second, and they rotate around their central axis through almost 180

degrees, allowing the bird to fly backwards and forwards and hover. A lot of these fascinating mechanical

properties can be considered the subject of biological physics.

But there is far more to these hummingbirds than just flying ability. They live for about nine years, spend

their summers in the northern parts of North America and their winters in tropical Central America. So,

this small animal can navigate in the fall over thousands of miles, including over hundreds of miles of

open water, to certain locations and then return in the spring to the region it was born. How is it that a

tiny hummingbird can do all this remarkable navigation? The advancement in capabilities of the digital
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computer over the past 30 years has been truly staggering, yet it pales against what the hummingbird's

brain can do. The human brain is far more impressive. Why can a couple of pounds of neurons drawing

a few watts of chemical power with an apparent clock speed of maybe a kilohertz at best do certain tasks

far better than a machine the size of a large truck running megawatts of power? And at a much more

troubling level, why do we speak of the soul of a person when no one at this point would seriously ascribe

any sense of self-recognition to one of our biggest computers? We seem to be missing something very

fundamental.

Traditional computers vs. biology
We have moved into the computer age via the pathway pioneered by British mathematician Alan Turing,

whom we first met in the introduction to this unit. Our modern-day computers all basically use the model

described in Figure 29, coupled with the idea that any number is to be presented by bits in a binary

representation. We have made things much faster than those early computers, but the basic idea has not

changed. Even the quantum computers promised in Unit 7 keep the same basic design, replacing binary

bits with more powerful qubits.
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The Strange Case of Phineas Gage

Phineas Gage's brain injury.
Source: © Wikimedia Commons, Public Domain.

On September 13, 1848, a 25-year-old man named Phineas Gage was tamping a blasting charge

with a steel rod about 2 cm in diameter and about 1 meter long. When he mistakenly ignited the

charge, the rod shot through his left cheek, taking out his left eye in the process, went through his

brain, exited through the top of his head, and landed some meters way. Amazingly, Phineas never

really lost consciousness and lived another 13 years. His personality changed for a while into that of

a "foul-mouthed, ill-mannered liar given to extravagant schemes that were never followed through."

However, even that aberration stopped after a short time, and he lived a productive life and traveled

widely.
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Figure 29: Schematic of a modern digital computer.
Source:

But this is not how biology has developed its own computers. The basic design has four major flaws as far

as biology is concerned:

1. The machine must be told in advance, in great error-free detail, the steps needed to perform the
algorithm.

2. Data must be clean; the potential loss of a single bit can crash the code.

3. The hardware must be protected and robust; one broken lead and the machine can crash.

4. There is an exact correspondence between a bit of data and a hardware location: The information in
the machine is localized.

None of this is any good for a biological system. As far as biology is concerned, our computers are

evolutionary dead-ends. We started this unit by considering the fragility of the egg in a large fall. Yet, as

the example of Phineas Gage in the side bar shows, our brain can take enormous abuse and remain

basically functional. I challenged you initially to drop the possibly cooked egg and see what happens.

Now I challenge you to take a 2 cm diameter steel rod and thrust it through your laptop with great force,

then try to surf the web.

The brain of a nematode
The human brain is probably the most complex structure in the universe that we know, but not only

humans have brains. The adult hermaphrodite of the "lowly" nematode C. elegans consists of only 959

cells; yet when you watch it navigating around on an agar plate, it certainly seems to be computing
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something based on its sensory input. The creature displays an astonishingly wide range of behavior:

locomotion, foraging, feeding, defecation, egg laying, larva formation, and sensory responses to touch,

smell, taste, and temperature, as well as some complex behaviors like mating, social behavior, and

learning and memory. It would be quite hard to build a digital computer that could do all that, and certainly

impossible to pack it into a tube about 1 mm long and a 100 microns in diameter that can reproduce itself.

The C. elegans doesn't have a brain per se, but it does have about 302 information-carrying neurons

that form approximately 7,000 synapses. We believe that any real brain capable of making some sort of

a computation, as opposed to the collective behavior seen in single-celled organisms, must consist of

neurons that transfer information. That information is not transferred to some sort of a central processing

unit. Biological computers are systems of interconnected cells that transfer and process information.

The network of neurons in C. elegans displays the common feature in interconnectivity: the synaptic

connections formed by the neurons.

The brain versus the computer
I want to concentrate on one thing here: how differently the brain, even the pseudo-brain of C. elegans,

is "wired" from the computer that you're using to read this web page. Your computer has well-defined

regions where critical functions take place: a section of random access memory (RAM) and a central

processing unit (CPU). Each part is quite distinct, and buses transfer binary data between the different

sections. Take out a single bus line or damage one of the RAM chips, and the system shuts down.

Brains in biology seem to have evolved in a different way. First, they are spatially diffuse. The computer

is basically a two-dimensional device. Brains at every level seem to be basically three-dimensional. The

interconnection takes place not via a bus, but rather through a vast network of input-output synaptic

connections. For example, C. elegans has roughly 20 interconnects per neuron. In the human brain,

we believe that the number is on the order of 103. Since the human brain has around 1012 neurons, the

number of interconnects is on the order of 1015—a huge number.
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Figure 30: Rainbow images showing individual neurons fluorescing in different colors. By tracking the neurons
through stacks of slices, we can follow each neuron's complex branching structure to create the treelike structures in
the image on the right.
Source: © Jeff Lichtman, Center for Brain Science, Harvard University.

It would be a mistake to think that the 1012 neurons in the brain correspond to about 1012 bits of

information, or about 100 Gigabytes. The number is much higher, because of the three-dimensional

interconnections linking each neuron with about 103 other neurons. Returning to our theme of spin

glasses, we can estimate the information capacity by making the simple assumption that each neuron

can be like a spin which is either up or down depending on its storage of a bit of information. This means

that the total number of differing configurations of the brain is on the order of , an absurdly huge

number, far greater than even the number of atoms in the universe. We can only assume that the brains

of living organisms emerged as they exploited this immense 3-D information capacity owing to the ability

of communities of cells to form neuronal interconnections throughout space.

How does the brain reason?
Given the large information capacity of even a small network of neurons and the fact that the human

brain's capacity exceeds our ability to comprehend it, the next question is: How does a brain reason? As

usual, we need to start by defining what we're talking about. According to the Oxford English Dictionary,

"reasoning" is "find[ing] a solution to a problem by considering possible options." I suppose this dodges

the question of the emergent property of consciousness, but I don't see this problem being solved any

time soon, although I hope I am wrong.
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The Dilemma of the Traveling Salesman—and the Hummingbird

Suppose a salesman must travel to N cities in the course of a trip. Naturally, he wants to travel

through each city only once. In what order should he visit the cities? If N is some small number,

the problem is trivial; but as N gets larger, the number of combinations to be considered blows up.

To travel to the 15 cities shown in Figure 31, the salesman must consider 14!/2 or 43,589,145,600

different combinations. This is somewhat doable by brute force on a laptop computer; but if

the number of cities, N, reaches 30, then the number of different combinations becomes about

1030, clearly impossibly difficult to solve by brute force. As it navigates north in the spring, the

hummingbird wants to pass through N locations where it will find flowers and to avoid traveling

through a location again because all the flowers in that location have been drained of their nectar. In

what order should it visit the locations?

The hummingbird has a big problem, essentially asking itself: How shall I fly back to a place I was at six

months ago that is thousands of miles away from where I am now? Presumably, the bird uses different

physics than that of a traditional computer, because the information content that the bird has to sort out

would cause it to fail catastrophically. So, we finally have the problem that perhaps physics can attack

and clarify in the 21st century: How can a set of interacting neurons with a deep level of interconnects

take previously stored information and determine an optimal solution to a problem it has not yet seen?

The hummingbird faces a problem rather reminiscent of the traveling salesman problem, explained in

the sidebar. To choose the correct locations to pass through on its springtime journey north, it must

consider a number of combinations far beyond the power of any computer system to resolve. How does

the hummingbird do it? Is it magic?

Physics shows that it isn't magic. As we have previously discussed, while a protein may fold or a species

play with its genome in an almost uncountable number of ways, basic free energy minima schemes

lead quite efficiently to a vastly smaller set of combinations that are roughly optimal. Nature doesn’t

necessarily find the "best" solution, but it seems able to efficiently find a subset of solutions that works

well enough. In the case of the traveling salesman problem, the vast combinatorics interconnects of a

neural network of many neurons provides exactly the kind of search over a free energy surface that we

need.
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The "reasoning" ability of neural networks
We have discussed how landscapes—either fitness landscapes or free energy landscapes—can give rise

to vastly complex surfaces with local minima representing some particular desired state. John Hopfield,

a theoretical physicist at Princeton University, has explored ways for a system to find these minima. The

three basic ideas below highlight how biological computers differ from their electronic counterparts:

1. Neural networks are highly interconnected. This interaction network can be characterized by a
matrix, which tabulates the interaction between each pair of neurons.

2. Neurons interact in a nonlinear analog way. That is, the interconnection interaction is not an "all or
nothing" matter, but a graded interaction where the firing rate of neurons varies smoothly with the
input potential.

3. An "energy function" can be constructed that allows us to understand the collective (or emergent)
dynamics of the neuron network as it moves over the information landscapes and finds local minima
that represent effective solutions to the problem.

Figure 31: An optimal traveling salesman problem (TSP) tour through
Germany's 15 largest cities. It is the shortest among 43,589,145,600
possible tours visiting each city exactly once.
Source: © Wikipedia, Creative Commons Attribution-ShareAlike
License.

Hopfield and molecular biologist David Tank set out to make an analogy between neural networks and the

energy network of a glassy system characterized by a large number of degrees of freedom. Following the

three principles outlined above, they used this analogy to write an equation for the free energy of a neural

network in terms of the interaction between each pair of neurons, the threshold for each neuron to self-
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fire, and the potential for each of the neurons in the network. They also recognized that the interaction

between pairs of neurons can change with time as the neural network learns.

The solution to a problem such as the traveling salesman problem emerges in the neural network as

interaction strengths between the neutrons are adjusted to minimize the free energy equation. The flow

of the neuron states during the computation can be mapped onto a flow on a free energy surface, similar

to the flow of a spin glass toward its ground state or natural selection on a fitness landscape (but in the

opposite direction). Clearly, quite complex and emergent neuronal dynamics can evolve with even the

simple system we are considering here.

Hopfield and Tank showed that this neuronal map has quite impressive "reasoning" ability. A set of 900

neurons encoded to solve a 30-city traveling salesman problem was able to find 107 "best" solutions out

of the 1030 possible solutions, a rejection ratio of 1023 in just a few clock cycles of the neural network.

Although we clearly are a long way from understanding the emergent nature of consciousness, this

example reveals the immense computational power of neural networks. Surely, one of the grand

challenges in 21st century physics will be to move from these simple physical models derived from very

concrete physics concepts to the vastly more complex terrain of the human brain.



Unit 9: Biophysics 52 www.learner.org

Section 9: Further Reading

• Howard Berg, movies of bacterial motion: http://webmac.rowland.org/labs/bacteria/
index_movies.html.

• Michael B. Elowitz and Stanislas Leibler, "A Synthetic Oscillatory Network of Transcriptional
Regulators," Nature, 2000 Jan. 20; 403(6767): 335-8.

• Robert Laughlin, "A Different Universe: Reinventing Physics from the Bottom Down," Basic Books,
2006.

• The National Human Genome Research Institute: http://www.genome.gov.
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Glossary

Brownian motion: Brownian motion is the seemingly random motion that a small particle (say, a grain

of pollen) undergoes when it is suspended in a liquid. First documented by Scottish botanist Robert

Brown, it was explained by Einstein as the result of the pollen grain being buffeted by the random motion

of molecules in the liquid. Brownian motion is similar to the random walk, and the equations governing

Brownian motion can be derived from the random walk equations by making the step size infinitely small

along with a few other mathematical assumptions.

catalyze: Some chemical reactions proceed much more quickly in the presence of a particular molecule

than they do when that molecule is absent. The molecule, called a "catalyst," is said to catalyze the

reaction.

complex adaptive system (CAM): A complex adaptive system, or CAM, is a population of individual

components that react to both their environments and to one another. The state of the population is

constantly evolving, and emergent behavior often appears. Biological and ecological systems are

examples of complex adaptive systems, as are the Internet, human society, and the power grid.

conformation distribution: The internal potential energy that a molecule has depends on its physical

structure, or conformation. Molecules tend toward structures that minimize their potential energy.

Sometimes there is not a single, unique minimum energy conformation. In this case, the conformation

distribution is the set of lowest energy states that a molecule can occupy.

energy landscape: The energy of a physical system can be represented by a mathematical function that

depends on several variables. The energy landscape that the system occupies is this function plotted as

a hypersurface in space that is one dimension higher than the relevant number of variables. If the energy

depends on one variable, then the energy landscape is a line drawn in a two-dimensional plane. If the

energy depends on two variables, the energy landscape is a two-dimensional surface embedded in three-

dimensional space that can look like mountains and valleys in a real landscape that one might encounter

on the Earth's surface. The ground state of a system is the lowest point on the energy landscape.

entropy: Entropy is a quantitative measure of the amount of order in a system. In statistical mechanics,

a system's entropy is proportional to the logarithm of the number of states available to the system. If we
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consider a collection of water molecules, its entropy is greater at room temperature, when the molecules

are bouncing around in a gaseous phase, than at very low temperatures, when the molecules are lined up

in a rigid crystal structure.

enzymes: Enzymes are proteins that catalyze chemical reactions in biological systems.

fitness landscape: The fitness landscape is a visual representation of how well adapted different

genotypes are to a set of environmental conditions. Each possible genotype occupies a point on the

landscape. The distance between each pair of genotypes is related to how similar they are, and the

height of each point indicates how well adapted that genotype is.

frustrated: A physical system is frustrated if it has no well-defined ground state because there are

competing interactions among the pieces of the system that cannot simultaneously be at an energy

minimum. A simple example is a system of three spins. If the interaction energy between two spins is

lowest when they point in opposite directions, the ground state of a pair of spins is clearly for the two

spins to point in opposite directions. If a third spin is added, it is pulled in opposite directions attempting to

minimize its interaction with the other two.

genome: An organism's genome is the complete set of genetic information required to reproduce and

maintain that organism in a living state.

ground state: The ground state of a physical system is the lowest energy state it can occupy. For

example, a hydrogen atom is in its ground state when its electron occupies the lowest available energy

level.

handedness: Handedness, also called "chirality," is a directional property that physical systems may

exhibit. A system is "right handed" if it twists in the direction in which the fingers of your right hand curl

if your thumb is directed along the natural axis defined by the system. Most naturally occurring sugar

molecules are right handed. Fundamental particles with spin also exhibit chirality. In this case, the twist

is defined by the particle's spin, and the natural axis by the direction in which the particle is moving.

Electrons produced in beta-decay are nearly always left handed.

metastable: A metastable state has a higher energy than the ground state that a physical system can

become trapped in for some length of time. A simple example is a ball sitting on a hilltop. The ball's

energy would be lower if it rolled down the hill; but unless something disturbs it, it will remain where it is.

Metastable states of atoms are put to use in atomic clocks because they are long lived, and therefore
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correspond to a clock frequency that can be known very precisely. In biological physics, valleys in the

energy landscape correspond to metastable states, as do low-lying peaks in the fitness landscape.

monomer: A monomer is a small molecule that can bind to other like molecules to form a polymer. The

amino acids that make up proteins are examples of monomers.

polar: A polar molecule has a nonzero electric dipole moment, so it has a side that is positively charged

and a side that is negatively charged.

polarizability: Some atoms and molecules that have no electric dipole moment in an electrically neutral

environment will develop one in an electric field. The polarizability of an atom or molecule is a quantity

that describes how susceptible it is to this effect.

polarization: The polarization of a wave is the direction in which it is oscillating. The simplest type

of polarization is linear, transverse polarization. Linear means that the wave oscillation is confined

along a single axis, and transverse means that the wave is oscillating in a direction perpendicular to its

direction of travel. Laser light is most commonly a wave with linear, transverse polarization. If the laser

beam travels along the x-axis, its electric field will oscillate either in the y-direction or in the z-direction.

Gravitational waves also have transverse polarization, but have a more complicated oscillation pattern

than laser light.

polymer: A polymer is a large molecule that is made up of many repeating structural units, typically

simple, light molecules, linked together. Proteins are polymers made up of amino acids. See: monomer.

random walk: The random walk is the trajectory that arises when an object moves in steps that are all the

same length, but in random directions. The path of a molecule in a gas follows a random walk, with the

step size determined by how far (on average) the molecule can travel before it collides with something

and changes direction. The behavior of many diverse systems can be modeled as a random walk,

including the path of an animal searching for food, fluctuating stock prices, and the diffusion of a drop of

food coloring placed in a bowl of water.

Second Law of Thermodynamics: The second law of thermodynamics states that the entropy of an

isolated system will either increase or remain the same over time. This is why heat flows from a hot object

to a cold object, but not the other way; and why it's easy to dissolve salt in water, but not so easy to get

the salt back out again.
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Turing machine: In 1937, Alan Turing outlined the details of the Turing machine in a paper investigating

the possibilities and limits of machine computation. The machine is an idealized computing device that

consists, in its simplest form, of a tape divided up into cells that are processed by an active element

called a "head." The cells can be in one of two states. The head moves along the tape, changing the cells

from one state to the other and moving either forward or backward according to a set of predetermined

instructions. Turing machines can be described with a set of simple mathematical equations that allowed

scientists to understand many of the basic properties of digital computing long before the first modern

computer was built.


