Join us for conversations that inspire, recognize, and encourage innovation and best practices in the education profession.
Available on Apple Podcasts, Spotify, Google Podcasts, and more.
The National Council of Teachers of Mathematics (NCTM, 2000) has identified number and operations as a strand in its Principles and Standards for School Mathematics. In grades pre-K through 12, instructional programs should enable all students to do the following:
“In the middle-grades mathematics classrooms, young adolescents should regularly engage in thoughtful activity tied to their emerging capabilities of finding and imposing structure, conjecturing and verifying, thinking hypothetically, comprehending cause and effect, and abstracting and generalizing” (NCTM, 2000, p. 211).
Watch another segment from Ms. Miles’s class, and think about how the students are developing this understanding of number and operations.
In this video segment, Ms. Miles leads students through the process of using the division algorithm instead of manipulatives to convert from base five to base ten and from base ten to base five. The students then work in groups to convert base ten numbers to base five.
You can find this segment on the session video approximately 17 minutes and 39 seconds after the Annenberg Media logo.
What reasoning processes are the students using to solve the problems?
Students are using logical reasoning and their understanding of place value in base ten to help them interpret base five numbers and convert them to base ten. Students are also using mental mathematics and the order of operations to solve the problems. The students realize that they must choose the appropriate place value first, meaning using the exponents to find the greatest power of 5 that is less than the number they are converting.
How does working in a different base develop students’ sense of number and operations? What does working with different bases tell us about place-value systems?
When students transfer what they know about base ten to another base, their understanding of place value is extended and deepened. Also, when students have an understanding of the base ten place-value system, their ability to do complex computations increases. They are more able to use mental mathematics to solve problems.
How did the manipulatives help students understand how to use long division to solve the problem?
Because students can picture what the manipulatives look like, they can understand that they first have to figure out what is the greatest power of 5 that is less than or equal to the number. This translates into dividing by the same power of 5 in the algorithm.
What are some ways that you see the NCTM Standards being incorporated into Ms. Miles’s lesson?
Ms. Miles’s lesson focuses on understanding numbers and ways of understanding numbers and number systems. For example, by converting from one base to another and vice versa, the students become more aware of the ways we represent numbers and the meanings underlying those representations, such as place value. They also make connections between the representations and are able to extend them when working with other bases.