Teacher resources and professional development across the curriculum

Teacher professional development and classroom resources across the curriculum

Monthly Update sign up
Mailing List signup
Search
Follow The Annenberg Learner on LinkedIn Follow The Annenberg Learner on Facebook Follow Annenberg Learner on Twitter
MENU
Discovering Psychology logo
 
Program 9: Remembering and Forgetting
History of Psychology
Research Methods
The Human Brain
Human Development
Therapeutic Approaches
link to Series Glossary
link to Series Glossary
Link to Series Who's Who
sitemap

Remembering and Forgetting is the ninth program in the DISCOVERING PSYCHOLOGY series. This program looks at the complexity of memory: how images, ideas, language, physical actions, even sounds and smells are translated into codes that are represented in the memory and retrieved as needed.

 
Explore:
Error - unable to load content - Flash

Essay: The Biology of Memory

 Memory is defined as stored information. When we take in information — a lecture, for example — neurotransmitters in the brain are working to filter and store the information in memory. While it sounds simple, memory is a complex and dynamic process that relies on a series of factors.

At a very basic level, the process involves the hippocampus in the brain taking information from the environment, encoding it, and changing it into a form that the cerebral cortex can then store, retain, and retrieve. Through each step a memory neurotransmitter called acetylcholine transmits the needed nerve impulses.

What we know about memory is also instructive about why we forget. In chronic memory loss and dementia, the acetylcholine transmission is impaired. In the most severe cases of memory loss, like Alzheimer's disease, not only is the acetylcholine connection devastated, but the cortex also gradually deteriorates and the brain acquires toxic substances.

Recent research into memory, forgetting, and the advancement of Alzheimer's disease focuses on the ways the eye-blink classical conditioning tests, demonstrated in the program, can predict the earliest onset of dementia and Alzheimer's disease. Because Alzheimer's disease kills cells and its pathology is irreversible, early detection is the only hope for a cure or prevention.

Doctors and researchers are working to develop a vaccine for Alzheimer's disease. The vaccine would block the toxins that accumulate in the brain and preserve the acetylcholine connection that is so vital to memory.


Visit Diana Woodruff-Pak's home page at Temple University. The site includes a schematic of eye-blink classical conditioning, brain scans of the cerebellum and hippocampus, as well as a bibliography of books and articles. http://astro.temple.edu/~pak/



 


© Annenberg Foundation 2014. All rights reserved. Legal Policy