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UNIT OBJECTIVES

Dimension is how mathematicians express the idea of degrees of freedom. •	

Distance and angle are measurements that exist in many types of spaces. •	

Lower-dimensional analogies extend qualitative understanding to spaces of four •	
dimensions and higher. 

The techniques of projection and slicing help us to understand high-dimensional •	
objects. 

High-dimensional space is one way to compare two people mathematically. •	

Hausdorff dimension is a re-envisioning of our normal thinking of dimension due to •	
behavior of objects under scaling. 

Fractal dimensions describe many real-world objects that exhibit statistical self-•	
similarity.
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Yet I exist in the hope that these memoirs,  
in some manner, I know not how, may find 
their way into the minds of humanity in  
Some Dimension, and may stir up a race  
of rebels who shall refuse to be confined  
to limited Dimensionality.

A Square in Edwin Abbot’s FlatlanD
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5.1SECTION

When we measure something, such as the length of a wooden beam, we are 
focusing on one particular characteristic of that object and assigning a number 
to it.  Many objects, however, in both our everyday experience and the realm of 
mathematics, cannot be adequately described by a single number.  For instance, 
if you were to build a house, you would need beams and boards that are cut 
precisely in three different directions, length, width, and breadth.  In other 
words, a 2 × 6 that is three feet long will not do if you need one that is eight 
feet long.  All three measurements are independent and important.  The more 
aspects that we can measure about a single object, the more precisely we can 
describe and work with it. 

This way of thinking leads us quite naturally to the idea of “dimension.”  
The word itself comes from the Latin dimensus, which means “to measure 
separately.”  So, quite literally, dimensions are aspects of a particular object 
that we measure separately from one another. 

In this unit, we will explore the idea of dimension in a few ways.  At first we will 
define it simply as quantities that can be manipulated independently of one 
another.  We will describe the fairly common concepts of one, two, and three 
dimensions—most of us can easily grasp these—and then we’ll explore the 
trickier 4th dimension and discuss how to conceive of higher dimensions.  Then 
we will introduce two concepts, scalability and self-similarity, and explain how 
these give rise to a different idea of dimension, the “fractal” dimension.

Dimension is a tangible part of our everyday experience; we are accustomed 
to “navigating the grid” in most cities and towns by moving in two directions, 
north-south and east-west.  Dimension is often referenced in popular culture, 
too.  Think of the “one-dimensional” character in a movie—the person who is 
concerned with only one thing, to varying degrees, such as the hero of an action 
movie, or the villain of a crime thriller.  Artists such as Marcel Duchamp and 
Pablo Picasso attempted to present the concept of “higher dimensions” in their 
works by portraying objects from different angles simultaneously.  In many 
works of science fiction, people use extra dimensions to travel around the galaxy 
via cosmic wormholes and other fanciful conjectures.

In modern mathematics the concept of dimension, utilized in a number of 
practical applications, encompasses much more than just the three spatial 

INTRODUCTION
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SECTION 3.1 degrees of freedom—length, width, and height—to which we are accustomed.  
For example, marketers and matchmakers design computer programs capable 
of constructing “30-dimensional” profiles of individuals based on their multiple 
interests and inclinations, hoping to pair these people with products or romantic 
partners.  

Many scientists believe that the very fabric of our universe—of reality—can be 
understood only by going beyond the traditional three dimensions and studying 
the mathematics of higher dimensions.  Whether it is the five dimensions 
associated with the theory of general relativity or the 13+ dimensions involved in 
string theory, we live in a reality that allows for many degrees of freedom. 

We can find exciting phenomena in fractional dimensions as well.  This entirely 
new and different way to view the concept of dimension has been applied to the 
simulation of realistic plants in computer programs and to the authentication of 
works of art, such as those of Jackson Pollock.

In this unit, we will learn how to leverage our intuitive understanding of the 
world of three dimensions to enable us to think meaningfully about worlds of 
many degrees of freedom.  Mathematics often is applied to the study of things 
and worlds that exist only in our minds—that is, the realm of the logically 
possible.  One of the basic tools mathematicians use to get a handle on these 
mental worlds is the notion of dimension.  We’ll develop a mathematical 
understanding of dimension and gain some familiarity with associated tools, 
such as slices and projections, which mathematicians use to conceive of and 
understand our world and other multi-dimensional frontiers. 

INTRODUCTION
CONTINUED
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Fundamental Notions•	
Lineland•	
Flatland •	
Spaceland •	

FUNDAMENTAL NOTIONS
The most basic conception of dimension is as a degree of freedom.•	
A point is an object with no properties other than location.•	
A space is a collection of locations.•	
Spaces can be characterized by their degrees of freedom.•	

The concept of dimension is, in its most basic and intuitive form, the concept 
of measuring certain aspects of an object independently from all of its other 
aspects.  This idea of dimension is also known as “degrees of freedom.”  If an 
object has three degrees of freedom—height, width, and length, let’s say—that 
means that it is able to “change” in any one of those three ways, and a change 
in one has no effect on the other two.  So, if we are navigating the streets of a 
city laid out on a grid system, for instance, we are free to change our east-west 
position or our north-south position, depending on whether we’re moving along 
an avenue or a street.  These are our two degrees of freedom.  In a city whose 
grid system is perfectly oriented to the four cardinal directions, going north on 
an avenue does not affect your east-west position.  

In order to examine the basic nature of spaces of different dimensions, we will 
look at how many numbers it takes to specify the location of a point.  For our 
purposes, a point is an object with no other properties other than its location.  
A point, by itself, has no degrees of freedom—it is effectively a space of zero 
dimensions.  

We consider a space to be a collection of locations.  The zero-dimensional space 
has only one location and, thus, allows for only one point.  A space with more 
than one possible location allows for at least one degree of freedom for a point 
in that space.  It also allows for the existence of multiple points, which then can 
be grouped to form line segments, polygons, solids, and so on, depending on the 
exact dimension of the space.

Degrees of  
Freedom

5.2
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SECTION
All spaces are not created equal.  Their differences can be characterized in 
various ways, such as how one defines distance, whether or not angles exist, 
and how many degrees of freedom are afforded the objects in that space.  We 
will concern ourselves only with the last of these properties.  To help you get a 
handle on this concept of degrees of freedom, here’s another way to look at it: 
a space of locations in which a point has only one degree of freedom is a space 
in which points can differ from one another in only one way.  A number line is a 
model of this type of space.

Furthermore, two points in this space of one degree of freedom can never have 
anything in common.  If they did, they would be the same point!

A space of two degrees of freedom allows for points to differ from one another in 
more than one way.  For instance, (0, 1) is different from (0, 2), even though both 
have a zero in common.  The points (1, 0) and (2, 0) are distinct from both each 
other and from (0, 1) and (0, 2), even though all four points incorporate a zero 
value somewhere.  A space of two degrees of freedom, thus, allows for a greater 
variety of locations than are possible with only one degree of freedom.

In this section we will look at a few familiar spaces in terms of their dimension.  
We will also give passing consideration to other properties, such as distance and 
area, but our primary concern will be with dimensionality and its consequences.

Degrees of  
Freedom 

CONTINUED

5.2
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Lineland  

A point in one dimension requires only one number to define it.•	
The number line is a good example of a one-dimensional space.•	
Line segments are objects that connect two points.•	
Distance in a one-dimensional space is found by taking the difference of two •	
distinct points. 

Let us first start by examining a one-dimensional space with which we are all 
familiar, the number line.

Life in a one-dimensional (1-D) space is, well, just not that interesting.  If you 
were a point in 1-D space, all that we would need to pin down your exact position 
is one number.  That number would simply be how far you were, in whatever 
units we’re using, from some agreed-upon reference point.  The units could be 
whatever we choose, as long as they are uniform.  For our present discussion, 
we’ll simply use the term “units.”  The reference point is assigned the value of 
zero and is more commonly known as “the origin.”

If we take two points in 1-D space and connect them, we form a line segment.  
This line segment has a property that no single point has, length.  The length of 
a line segment in 1-D space can be found from the positions of the two endpoints 
via subtraction.

That’s about all the “news” from one-dimensional space.  Forwards or 
backwards, this side of the origin or that side, long or short line segments—
these are pretty much the only things we could possibly care about if our 
world were one-dimensional.  So, let’s move on to explore a significantly more 
interesting place, two-dimensional space.

Degrees of  
Freedom 

CONTINUED

5.2
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Flatland

Points in two-dimensional space require two numbers to specify them •	
completely.
The Cartesian plane is a good way to envision two-dimensional space.•	
Distance in the Euclidean version of two-dimensional space can be •	
calculated using the Pythagorean Theorem.  One way that different spaces 
are distinguished from one another is by the way that distance is defined. 

In a two-dimensional (2-D) world, we have an added degree of freedom over a 
one-dimensional world.  One number is no longer enough to specify a unique 
location.  For instance, on the Cartesian plane a “3” on the horizontal direction, 
or axis, can be paired with many different vertical values, and each pairing 
defines a different, unique location in the space.  Due to the fact that the 
horizontal and vertical directions are “measured” completely independently of 
each other, we need two numbers to pin down a location in 2-D space.

Degrees of  
Freedom 

CONTINUED

5.2
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SECTION
 

Also, the origin now is not only the reference point for the horizontal axis, as 
with the number line, but also for the vertical axis.  It, too, requires two numbers 
to define its location, so we define the origin as the point (0, 0).  Notice now that 
the question of direction is much more interesting than in 1-D space.  In one 
dimension, you can only go back and forth, but in two dimensions you can go 
back and forth, up and down, or any combination of these.

Degrees of Freedom 
CONTINUED

5.2
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SECTION
Imagine that we have a line segment that starts at the origin and goes to (3, 4).

It’s obvious that this line segment has neither a strictly vertical nor a 
strictly horizontal orientation, but rather some hybrid of the two directions.  
Furthermore, finding the length of this segment is now not a simple subtraction 
problem, as before.  We can, however, still determine a length by examining the 
line segment’s directional components.

Degrees of Freedom 
CONTINUED

5.2
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SECTION
The components of the line segment can be thought of as its “shadows” 
on the horizontal and vertical axes.  This idea of finding a shadow will help 
us in understanding how objects with components in multiple independent 
dimensions can be visualized, but we’ll get to that a little later.  

Notice that the line segment forms the hypotenuse of a right triangle whose legs 
are the horizontal and vertical components.  This means that we can determine 
the length of the line segment—or, in other words, the distance from the origin 
to (3, 4)—by using the Pythagorean Theorem.

(horizontal component)2 + (vertical component)2 = (hypotenuse)2

If we rewrite this, taking the square root of both sides, we get: 

 
hypotenuse = horizontal component( )2

+ vertical component( )2





So, plugging in the horizontal value, 3, and the vertical value, 4, we get the 
familiar 

 
5 = 32 + 42( )  for the length of our line segment.

The fact that we can use the Pythagorean Theorem to calculate the distance 
between two points means that the version of 2-D space that we have been 
studying is Euclidean.  There are other ways to define distance, and this turns 
out to be a good way to distinguish between spaces that, although they have the 
same dimension, exhibit different behaviors.  

Spaceland
The concepts of distance and angle extend naturally into three dimensions.•	
The way in which we extend our thinking from two to three dimensions •	
provides us with a template for thinking about higher dimensions.
Each time we consider a new degree of freedom, we introduce a new •	
property that cannot exist in lower dimensions. Area (for 2-D) and volume 
(for 3-D) are examples.

We have seen that in the 2-D world, horizontal and vertical directions are 
independent dimensions.  To think about a 3-D world, we need one more 
direction that can change independently of horizontal and vertical changes.  We 
know this direction as movement “toward” or “away.”  For simplicity’s sake, 
from here on out we will follow convention and represent horizontal distance by 
the letter x, vertical distance by the letter y, and distance toward (the “positive” 
direction) or away (“negative”) by the letter z.

Degrees of Freedom 
CONTINUED

5.2
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Notice that using just two 
numbers won’t uniquely 
specify a point in this 
space.  For instance, the 
designation (3, 4) pins 
down a location only in 
the xy-plane—it tells us 
nothing about location in 
the z-direction, or in other 
words, how near to us or 
how far from us the point 
is.  In fact, in 3-D space 
(3, 4) defines a line, one 

that is parallel to the z-axis.  In other words, because no z value is specified, 
the assumption is that z can take on any value, from positive infinity to negative 
infinity.  By contrast, (3, 4, 12) does indeed designate a uniquely defined point in 
three dimensions.

In the 2-D world, we saw that we could use the Pythagorean Theorem to find  
the distance from one point to another.  Does it also work in the 3-D world?   
Let’s see.

To find the distance from the origin to (3, 4, 5), we can imagine two right 
triangles like so:

The first triangle is 
formed in the xy-plane, 
with its hypotenuse 
being the line segment 
that extends from the 
origin to (3, 4).  We saw 
earlier that the length of 
this hypotenuse can be 
calculated directly from 
the Pythagorean Theorem:

32 + 42 = 52

Degrees of Freedom 
CONTINUED

5.2
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SECTION
Thus, the hypotenuse of the first triangle measures 5 units.  This line segment 
now becomes a base of the second triangle, with vertices at the origin, (3, 4, 0), 
and (3, 4, 12):

Again, we can use the Pythagorean Theorem to find the length of the 
hypotenuse.

52 + 122 = 132

So, the length of the 
line segment from the 
origin to (3, 4, 12) is 13 
units.  Notice that if we 
plug in the expression 
for the square of the 
first hypotenuse into the 
expression for the second 
hypotenuse, we get:

32 + 42 + 122 = 132

More generally:
(the x distance)2 + (the y distance)2 + (the z distance)2 = (total distance)2

This shows us that the Pythagorean Theorem generalizes quite nicely from the 
2-D world to a 3-D world.  In fact, we could continue this development into 4-D, 
as we will soon see.

As we stated earlier, the addition of each new dimension to a space introduces 
a new property that lower-dimensional spaces don’t have.  For instance, in 
2-D space we can have not only line segments but also planar shapes, such 
as squares and discs, which exhibit the new property of “area.”  Similarly, 3-D 
space introduces the property of volume.  Shapes with the property of volume, 
called solids, are not possible in any space with fewer than three dimensions.

Also, note that we have been referring to dimension primarily as a spatial 
measure, but it doesn’t have to be.  Any quantity that can be measured 
independently of others qualifies as a dimension. So, imagine that we have 
a particle at a particular location in 3-D space.  We might be concerned with 

Degrees of Freedom 
CONTINUED

5.2
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SECTION
other properties of this particle besides its three spatial coordinates, such 
as its mass, charge, or color.  If we included each of these three independent 
measures as basic attributes in our description of the particle, we would have 
a six-dimensional object—that is, it would be uniquely determined in a space 
of six dimensions.  Such a space is not very easy to visualize, but it presents no 
problems mathematically.  We simply realize that it is the space that contains 
all sets of six numbers.  Only three of those numbers are spatial coordinates, 
but we don’t necessarily need to limit ourselves to these.  We have seen that 
ideas from lower-dimensional spaces generalize quite nicely as we step up 
to higher-dimensional realms.  We can use this idea to leverage our intuitive 
understanding of lower-dimensional spaces to spaces of four dimensions  
and higher.

Degrees of Freedom 
CONTINUED

5.2
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SECTION 5.3

Is Time the Fourth Dimension?•	
Hyperland•	
The Hypercube•	
Ways To Envision Four Spatial Dimensions•	

The idea that there are levels of reality that are normally inaccessible in our 
daily lives is an ancient one.  Mathematicians of the mid-nineteenth century 
brought this ancient fascination into the modern age with their study of spaces 
of four dimensions and higher.  There are a few ways to interpret what we 
mean by “the fourth dimension,” but they all boil down to considering another 
degree of freedom that is independent of the three spatial dimensions that 
we have defined.  After just a few years of running and jumping around, we all 
develop a pretty good intuitive sense of three dimensions, but imagining a fourth 
independent “direction” can pose somewhat of a challenge.  Perhaps the most 
intuitive way to conceive of this dimension is to think about it as time.

Is Time the Fourth Dimension?

Time is often thought of as the fourth dimension.•	
Time plays a key role as a dimension in mathematical formulations of •	
physical laws and theories such as general relativity and string theory.
The qualitative behavior of time as the fourth dimension is debatable.•	

Viewing time as the fourth dimension is appealing for a number of reasons.  
The first is that we naturally have experience with time coordinates.  When we 
tell someone we will meet them for coffee at 3 P.M., we are specifying a point 
in time.  However, to increase the odds that the meeting actually occurs, we 
also need to specify a place.  So, establishing the meeting uniquely requires 
three spatial coordinates and one time coordinate.  You might say, “Meet me at 
3 P.M. on the fifth-floor terrace of the building on the northwest corner of 3rd 
Street and 4th Avenue,” for example.  Of course, it is possible for time to change 
independently of the spatial coordinates—all you have to do is sit relatively still 
and your time coordinate will change while your position will not.  So, if your 
friend is late, you can maximize your chances of still meeting the person by 
waiting at the correct spatial coordinates as the time coordinate continues to 
change.

journey into the 
fourth dimension
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SECTION 5.3 There are a couple of problems with considering time the fourth dimension, 
however.  The first is that you aren’t entirely free to “move around” in the time 
dimension.  In fact, you are pretty much stuck moving forward at a rate that 
you cannot control (but that, according to Einstein, is not necessarily the same 
for everybody).  So, time allows only a partial degree of freedom.  The second 
problem is that, while you can change your time coordinate without changing 
your spatial coordinates, the reverse is not true: how could you move from point 
A to point B without a passage (i.e., change in “position”) of time?  

So, time’s role as a fourth dimension may be debatable on some philosophical 
level, but for practical purposes, it works quite well.  In fact, Einstein treated 
time as inseparable from the three dimensions of space and gave us the 
concept of “spacetime,” which is the four-dimensional equivalent of a surface, 
something that we discuss in some depth in other units.  This spacetime, 
however, is curved by massive objects, which suggests that there might be a fifth 
dimension that allows this curvature to take place.  While this may seem mind-
boggling, string theory, one attempt by physicists to unify the fundamental laws 
of the universe, is even more of a stretch.  Depending on which version of string 
theory you adopt, you will be asked to envision a space with between 8 and 26 
dimensions.  At some point, this just seems like the stuff of science fiction, and 
a perfectly rational question would be: what are these higher dimensions?  Are 
they spatial?

Hyperland

A point in four-space, also known as 4-D space, requires four numbers to fix •	
its position.
Four-space has a fourth independent direction, described by “ana” and •	
“kata.” 
In Euclidean four-space, our standard notions of Pythagorean distance and •	
angle via the inner product extend quite nicely from three-space.

Before we get carried away by trying to comprehend a world of many 
dimensions, we can start by considering what a fourth spatial dimension would 
be like.  Let’s back up and think about how we expanded our thinking through 
the lower-dimension worlds that we introduced previously.  Remember that 
we used familiar concepts from the 2-D world to understand the 3-D world, so 
perhaps we can use concepts from the 3-D world to understand the 4-D world.

journey into the 
fourth dimension

CONTINUED
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SECTION 5.3 First off, to specify a point in four-space, we need four numbers

Consequently, a point such as (1, 2, 3) is not uniquely defined in four-space; it 
would, in fact, designate a line parallel to the fourth axis, which we’ll call the 
w-axis.  In four-space, the w-axis is perpendicular to the x, y, and z, axes.  

Now we’ve created a visualization problem.  Most people are not accustomed to 
thinking about a fourth axis in the space around us, and representing it poses 
a challenge.  To produce a visual model, we have to rely upon an illusion.  This 
should not overly concern us, however—we already do this when we depict a 3-D 
object on a 2-D piece of paper or computer screen.  For example, to represent 
the third dimension, the z-axis, on a flat piece of paper (or a screen), the 
convention is to draw a diagonal, dashed line in the xy-plane—we then use our 
imaginations to view this line as “coming out of” the page.

journey into the 
fourth dimension

CONTINUED
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SECTION 5.3 To draw the fourth dimension, the w-axis, on a flat page also requires an illusion 
and our imaginations.  Let’s draw another line in the xy-plane and imagine that 
it is “coming out of” the 3-D space that we already have in mind.  In some ways, 
we’re creating an illusion within an illusion.  

Before you are tempted to dismiss this as hocus-pocus, consider that the 
mathematics is rock solid; it is only our habitual perception that is troubling us.  
This is an interesting case of how techniques from mathematics can help us to 
think about things that are difficult for our natural faculties of perception.

Remember that our conception of movement in the third dimension is “toward” 
and “away.”  If it helps you, think of this new, fourth degree of freedom as “in” 
and “out.”  Some mathematicians, however, prefer the terms “ana” and “kata,” 
the Greek words for “up” and “down,” respectively, to represent the directions 
one can move on the fourth axis.

Four-space has the capacity for all the configurations associated with lower 
dimensions—lines, angles, planar shapes, and solids.  Also, in the Euclidean 
view of four-space, it’s possible to find the distance between two points by using 
a straightforward extension of the Pythagorean Theorem.  

The Hypercube

The hypercube is the four-dimensional analog of the cube, square, and line •	
segment.
A hypercube is formed by taking a 3-D cube, pushing a copy of it into the •	
fourth dimension, and connecting it with cubes.
Envisioning this object in lower dimensions requires that we distort certain •	
aspects.
The tesseract is a 3-D object that can be “folded up,” using the fourth •	
dimension, to create a hypercube.

journey into the 
fourth dimension

CONTINUED
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SECTION 5.3 You may recall that our “new” fourth dimension must introduce a quantifiable 
property that has not yet existed in any of the lower dimensions—this is simply 
a pre-requisite of a degree of freedom.  Objects in four-space have a property, 
analogous to area and volume, that we call “hyper-volume.”  Possibly the most 
famous object with this property is the hypercube.  To prepare to understand it, 
let’s first look at how we formally construct “normal” squares and cubes.

First, to create a square in two dimensions, or a cube in three dimensions, we 
start with the analogous object from the dimension that is one lower.  That is, we 
use parallel line segments, joined by perpendicular line segments, to create the 
square.  To create the cube, we use parallel squares connected by perpendicular 
squares.  

So, to create the hypercube, we start with a cube in 3-D space; then we create 
another cube at a distance equal to the side-length of the original cube along 
the w-axis.  These two cubes can be thought of as being parallel in the same way 
that the opposite sides of a square or the opposite faces of a cube are parallel.

Creating a hypercube by pushing.

Think back: to make a square, we connected the endpoints of two parallel 
line segments using line segments of equal length; and to make a cube, we 
connected the edges of two parallel squares with squares of equal shape.  So, 
to construct a hypercube, we will connect the faces of our parallel cubes with 
cubes of equal size.  It should be clear that connecting all the faces of our two 
parallel cubes requires six “connector” cubes.  Consequently, the hypercube is 
made up of eight regular cubes that are “glued together” such that all of their 
faces are attached to one another.  Trying to visualize this can truly turn one’s 
brain inside out, but here’s a progression of images that might help:

journey into the 
fourth dimension

CONTINUED



Unit 5  |  18

UNIT 5 Other Dimensions 
textbook

SECTION 5.3

journey into the 
fourth dimension

CONTINUED
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SECTION 5.3

journey into the 
fourth dimension

CONTINUED
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SECTION 5.3 If it helps, imagine constructing a cube from this 2-D plan, or pattern, which is 
called a “net”: 

To build the 3-D object from the 2-D net, you simply fold and glue the 
appropriate edges together.

We can think of the following shape as a 3-D net that can be folded up to make a 
hypercube:

To create the hypercube, we need to fold and glue faces to attach to one another.  
Obviously, this requires that we “smush” and stretch the cubes, but were we 
doing this in 4-D space, no deformation would be necessary.

journey into the 
fourth dimension

CONTINUED
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SECTION 5.3 Ways To Envision Four Dimensions
A viewer from the fourth dimension would see both our insides and our •	
outsides simultaneously.
Higher-dimensional viewing allows all sides of an object to be seen •	
simultaneously.
Artists such as Picasso and Duchamp have used the concept of higher-•	
dimensional viewing in their works.

Being in 4-D space has some rather strange properties.  To imagine what some 
of these might be like, let’s again use a lower-dimensional analogy.  Let’s say 
that a square in 2-D space has both a defined front and a defined back.  If we 
were in the plane with the square, we would not be able to see its back if we 
were looking at its front.

However, if we raise ourselves 
up off of the plane, we can 
simultaneously see both the 
front and the back, as well as 
the interior, of the square.  We 
may think this is no big deal, 
but the higher-dimensional 
extension of this thinking can 
be quite unnerving.

If a four-dimensional being were to look at us, they could see all sides of us 
simultaneously.  Plus, they would be able to see our “interiors.”  Now, the 
interior part is a bit hard to visualize, but we can imagine seeing something  
from all angles simultaneously.  Anyone who has constructed a 360-degree 
photo landscape has some idea of what a four-dimensional being would see in 
our 3-D world.

This idea of seeing something from multiple angles simultaneously, can 
be found in much of the art from the early twentieth century.  The cubists, 
including Pablo Picasso and Marcel Duchamp, were very much influenced by the 
mathematical exploration of higher dimensions.

journey into the 
fourth dimension

CONTINUED

ITEM 2967 / Oregon Public Broadcasting, created for Mathematics Illuminated, VIEW OF A 4-D BEING; NOTE THAT 
THE TREE IS THE SAME ON THE RIGHT AND LEFT EDGE (2008). Courtesy of Oregon Public Broadcasting.
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SECTION 5.3 We have now seen how a fourth spatial dimension can exist in the mental realms 
of both mathematics and art.  Whether or not it exists in the real world is a 
matter for science to settle.  To prove it, we would have to observe phenomena 
that cannot be explained in the absence of a fourth spatial dimension.  
Regardless of whether a fourth spatial dimension is physically real, however, 
mathematical reasoning has shown that it is at least logically possible.

Mathematics provides tools with which we can explore and understand not 
only the world of our senses, but also worlds we can conceive of only in our 
minds.  Higher-dimensional worlds are indeed possible for us to think about, 
but we need certain tools in order to be able to say anything meaningful about 
them.  Analogies with lower-dimensional spaces represent one tool, the value 
of which we have already seen in our earlier discussions.  In the next section we 
will learn about other mathematical techniques that we can use in our quest to 
achieve a broader comprehension of dimension.

journey into the 
fourth dimension
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SECTION

The Hypersphere •	
Slicing the Hypercube•	
Shadows in the Cave•	

In 1884 Edwin A. Abbott published a novel about the concept of higher 
dimensions entitled Flatland: A Romance of Many Dimensions.  His novel 
chronicled the adventures of A Square (a play on the author’s own name), 
who resides in a two-dimensional world called “Flatland.”  A Square is a 
plane figure, and as such has only two degrees of freedom.  He recognizes the 
directions “left,” “right,” “forward,” and “backward,” but he has no concept of 
“up” or “down.”

One day, A Square receives a visit from a visitor from the third dimension, A 
Sphere.  A Sphere “lifts” A Square out of Flatland so that he can experience a 
three-dimensional world that was, up until that point, unthinkable.  Abbott’s 
book is a classic and is well worth reading, as its descriptions of how to think 
about higher dimensions are still quite useful.

Let’s focus on one particular incident in the book, the part in which A Sphere 
first makes contact with A Square.  A Sphere introduces himself in this way: 

I am not a plane Figure, but a Solid.  You can call me a circle; but in reality 
I am not a Circle, but an infinite number of Circles, of size varying from a 
Point to a Circle of thirteen inches in diameter, one placed on the top of 
the other.  When I cut through your plane as I am now doing, I make in your 
plane a section which you, very rightly, call a Circle.  For even a Sphere—
which is my proper name in my own country—if he manifest himself at all 
to an inhabitant of Flatland—must needs manifest himself as a Circle.1

A Sphere’s appearance in Flatland is an example of how we can use lower-
dimensional slices to get an idea of the structure of higher-dimensional objects.  
If you’ve ever seen a topographical map, you have some idea of how such 
“slices” are used to represent a 3-D landscape on a 2-D page.  

5.4

Slices, projections 
and shadows



Unit 5  |  24

UNIT 5 Other Dimensions 
textbook

SECTION 5.4 The lines represent what are 
known as “level curves.”  They 
are what we would see were 
we to slice the landscape at 
different elevations.  We can 
use a similar slicing process to 
get a sense of the structure of 
objects in four dimensions.

The Hypersphere
A sphere can be thought of as a stack of circular discs of increasing, then •	
decreasing, radii.
The process of slicing is one way to visualize higher-dimensional objects via •	
level curves and surfaces.
A hypersphere can be thought of as a “stack” of spheres of increasing, then •	
decreasing, radii.

A sphere is a three-dimensional object, so it cannot be represented in two 
dimensions in the same way that it is in three dimensions.  We could try to use 
an illusion, as we did when portraying the w-axis, or we could consider a series 
of slices taken at different positions on the sphere, as A Square encountered A 
Sphere in Flatland.

Note that any 2-D slice of a sphere is a circle.  Let’s take a moment to look at 
what this entails mathematically.

Slices, projections 
and shadows

CONTINUED

Item 3085 /Brandon Laufenberg, TOPOGRAPHY [VECTOR] 
(2006). Courtesy of iStockphoto.com/Brandon Laufenberg.  
A topographical map shows contour lines that correspond  
to lines of constant altitude.
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SECTION 5.4 The equation for a sphere in three dimensions comes from its definition:  
all the points in space that are a given distance from the center.  Remember that 
distance in this space is calculated by using the 3-D version of the  
Pythagorean Theorem, 
 
d = ( (difference of x coordinates)

2

 + (difference of y coordinates)
2

 + (difference of z coordinates)
2 )

If we designate a point on the sphere as (x, y, z), and if we set the center at the 
origin, this equation simplifies to:

d2 = x2 + y2 + z2

So, to our friend A Square, who has no notion of “z,” this will look like d2 = x2 + 
y2, which is the equation for a circle in the 2-D world.  What actually happened 
to the “z” dimension?  Well, if we imagine that the size of the circle in the plane 
depends on where exactly the plane is slicing the sphere, then z must have 
something to do with the size of the circle.

Mathematically, we can see this by rearranging our sphere equation a bit to get:

d2 – z2 = x2 + y2

So, if z represents where the plane is slicing the sphere, the act of slicing 
equates to holding z constant.  We can readily see that smaller absolute values 
of z will yield larger circles, assuming, of course, that z = 0 represents the slice 

that passes through 
the exact center of the 
sphere.
These slices, also 
called “level curves,” 
equivalent to the lines 
on a topographical 
map, are a useful way 
of thinking about how 
lower-dimensional 
slices “stack up” 
to make a higher-
dimensional object.  

Slices, projections 
and shadows

CONTINUED
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SECTION 5.4 Let’s look at the case of the hypersphere, whose equation is just like that of the 
sphere, with an added variable:

D2 = x2 + y2 + z2 + w2

We can think of the hypersphere as a 4-D version of a sphere, just as a 
hypercube is a 4-D version of a cube.  Before taking a slice of the hypersphere, 
let’s just rearrange the equation, as before, to get:

D2 - w2 = x2 + y2 + z2

So, if we hold w constant, we will get a slice of the hypersphere.  

C = x2 + y2 + z2, where C is (D2 – w2)

Notice that this is just the equation for a sphere in three dimensions.  So, our 
“slice” is actually a three-dimensional object.  To be precise, what we normally 
think of as a three-dimensional sphere is really a two-dimensional surface; we 
are not concerned with points on the interior.

To create a hypersphere, 
we would glue together all 
the slices from w = -d to w 
= +d.  This gluing and the 
resulting form are a bit hard 
to imagine, but looking at 
the slices gives you some 
sense of the features of a 
hypersphere, such as the 
observation that its volume 
decreases as you approach 
extreme values of w.

Taking slices of a 
hypersphere is relatively 

straightforward.  We don’t need to worry about how it is situated in relation to 
the slicing plane because it appears the same from all angles—it exhibits radial 
symmetry.  Might the same be true of the hypercube?  To find out, let’s first 
consider a regular cube.

Slices, projections 
and shadows

CONTINUED
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Slicing the Hypercube
Slicing a cube yields different types of polygons, depending on the angle at •	
which you slice.  This is in contrast to the slicing of a sphere, which always 
produces circles, regardless of the angle.
Slices of a hypercube are various polyhedra, not just a series of cubes.•	
Slices can miss crucial information about an object, such as whether or not •	
it is connected.

Similarly to how a plane can be used to slice a circle, we can also use a plane 
to slice a cube. This time, however, the shape of the slice depends on the 
orientation of the cube as it passes through the plane.

All three of the cubes shown are the same z-distance from the plane, but notice 
that the slices are different!  This is because the cube is positioned differently 
in each example.  Imagine slicing a block of cheese; the shape of your slice 
depends on whether you are slicing a corner or a face and at what angle.

Imagine now a cube that is sliced perfectly through the middle by the xy-plane, 
thus creating a square in the plane.  Rotations in the xy-plane still give a square 
and, were we to keep all other rotation angles constant, we could change the z 
value from 

  
−

d

2  to positive 
  

d

2 , while rotating the cube and we would always have 
the same-sized square, albeit a rotated one.  This kind of rotation would be 
fathomable for a Flatlander.

However, if we rotate the square in the xz- or yz-planes, the shape of the slice 
changes.  The most extreme example of this would be to imagine what the slices 
of a cube would look like if it were to enter the plane vertex first.  It might look 
like this:

Slices, projections 
and shadows

CONTINUED
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SECTION 5.4

In a similar way, the slice of a hypercube will depend on its orientation in the 
xw-, yw-, and zw-planes.  Here is a sequence of images representing 3-D slices 
of a hypercube entering our space, vertex first: 

So, we have seen that taking slices can help give us some idea of how four-
dimensional objects behave.  Because slices are often incomplete pictures, 
however, they necessarily miss many features of an object, depending on how 
the slice is taken.

Slices, projections 
and shadows

CONTINUED

These are some of the two-dimensional slices of a three-
dimensional cube.

These are some of the three-dimensional slices of a four dimensional hypercube.
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If we extend this thinking to a four-dimensional being intersecting our 3-D 
world, we would perceive something like this:

This 4-D creature 
does indeed have a 
continuous body, but 
the connections are 
all situated outside 
of 3-D space, as 
with the preceding 
hand example.  An 
extra dimension can 
provide connections 
and paths that are 
not available in lower 
dimensions.  An 
interesting sidenote 
is that going into this 

fourth dimension does not somehow shrink the distance in 3-D space—it simply 
allows a being to circumvent 3-D barriers.  So, although going into “hyperspace” 
to travel among the stars, as many a sci-fi character has done, does not 
necessarily mean you can get anywhere more quickly, it does mean you won’t 
have to worry about running into any objects along the way. 

Shadows in the Cave
Projections are like shadows.•	
Projections are related to the inner product.•	
Projections preserve more information than slices, but they necessarily •	
distort the picture in some way.

An alternative way to view a higher-dimensional object in lower dimensions is 
through a projection.  There are many different techniques of projecting, but the 
one that we will examine is probably the most intuitive—we’ll simply ignore a 
dimension.

To project a square, a fundamentally 2-D object, onto a lower-dimensional 
space, the number line, we imagine a sort of transparent shadow that it casts on 
the line.

Slices, projections 
and shadows

CONTINUED
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SECTION 5.4 A similar process can be used to project a 3-D cube onto a 2-D plane.  

We could also, if we wanted to, project a 3-D cube onto a 1-D line.  To do this, 
we would first project the cube onto the plane, then project the resulting planar 
shape onto the line, as we did with the square.

Slices, projections 
and shadows

CONTINUED

Double projection
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SECTION 5.4 Representing a hypercube on 
a flat page requires a similar 
double projection.  First, we 
project the original 4-D object 
onto a 3-D object; then we project 
the 3- object onto the 2-D page.  
The result is quite different 
from what we would see were 
we somehow able to view the 
hypercube in four dimensions, 
but it does convey important 
information about its structure.

We can think of a projection as the flattening of an object.  Consider how you 
can flatten a flower or leaf by placing it between the pages of a thick book.  The 
result captures much about the essential shape of the object while, at the same 
time, distorting it in some fashion.

These techniques, slices and projections, can come in handy when trying to 
understand what higher-dimensional spatial objects are like.  We said earlier, 
however, that dimensions need not necessarily be spatial.  We will now turn our 
attention to some, possibly surprising, uses of dimension in our own, normal, 
three- (or four-, or five-, or more) dimensional experience.

Slices, projections 
and shadows

CONTINUED

A double projection of a hypercube
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SECTION

Dimensions of Personality•	
Love in 30 Dimensions •	

Dimensions of Personality
Dimension can be used as a rough way to quantify certain aspects of human •	
nature.

You’ve probably heard the expression “one-dimensional” used to describe 
someone or something that lacks a certain “depth” of character or complexity.  
For example, a puppy could be described, more or less, as a creature that only 
wants to play—sometimes more, sometimes less.

Stereotypes such as the husband who cares only about sports, or the daughter 
whose only concern is her shoes, offer human examples of this conception 
of one-dimensionality.  One would hope that most people are not so simply 
described, however.

Taking a broader view of our puppy, we could say that she is also concerned with 
her hunger level.  Given those two primary interests, to describe the puppy at 
any point in time, we would need two numbers, one representing the desire to 
play and the other representing the desire to eat. 

5.5

Many Dimensions  
in Everyday Life
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These two axes serve as the basis for a two-dimensional plane.  The points in 
the plane correspond to different states of our puppy.  So, (1, 9), for instance, 
would represent a puppy that doesn’t want to play much but that is extremely 
hungry.  On the other hand, (9,1) would represent a puppy that, perhaps, has just 
eaten and now is full of energy!

Now that we have the general idea, let’s look at a three-dimensional case 
involving very simple humans.  Let’s say that these humans have three 
measurable characteristics: affinity for low-budget movies, truthfulness, and 
energy level.
 
Every human can be classified somewhere in this space, depending on one’s 
respective values for the three characteristics.  Now, we could ask, “what does 

it mean for two people to be 
close to one another in this 
space?”  (Remember that this 
is not space-space, but rather 
“characteristic-space.”)  
The best way to think about 
this is to think about the 
points corresponding to each 
person’s profile.

Let’s say that person A is 
represented at (1, 9, 9) and 
person B is represented at 
(0, 9, 8).  This means that 
person A doesn’t like low-

budget movies much, is very honest, and has very high energy.  Person B can’t 
stand low-budget movies, is very honest, and has high energy.  Judging by 
these characteristics, these two people might get along pretty well.  As a rough 
approximation of their “compatibility,” we can find the distance between their 
profile points in characteristic space by using the 3-D version of the Pythagorean 
Theorem.

 
Distance = difference in x( )2

+  difference in y( )2

+  difference in z( )2





= 1-0( )2

+  9-9( )2

+  9-8( )2





This equals a distance of 2 , or approximately 1.41—very close.

5.5

Many Dimensions  
in Everyday Life

CONTINUED
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SECTION 5.5 What would we expect of two people who were far apart in this characteristic 
space?  For example, let’s consider person C, represented at (1, 0, 0): this 
person hates low-budget movies, lies like a rug, and spends all day on the 
couch.  Person D, represented at (9, 9, 9), loves low-budget movies, always tells 
the truth, and works out every day.  We can intuitively guess right away that 
these two probably won’t get along; let’s see what the distance between them 
would be:

 
Distance = 1-9( )2

+  0-9( )2

+  0-9( )2





This expression corresponds to a distance of about 15.5, quite a bit larger than 
that of the first couple.  Of course, in this case, we are looking at only three 
aspects of a person’s life.  It’s hard to imagine that this would be enough degrees 
of freedom to come anywhere close to capturing an accurate description of 
somebody mathematically.  

Love in 30 Dimensions
A 30-question survey can be used to create a 30-dimensional profile of a •	
person.
People can be matched according to their distance from each other in 30-•	
dimensional space.

One of the great things about the Internet is its capacity to connect people with 
the things that they want or need.  Many websites collect information about 
people and then make recommendations as to what book they should read, what 
music they should listen to, and even whom they should date.  Services such as 
these, however, use many more than just three measurements or dimensions 
to quantify a person.  They typically construct a many-dimensional profile of a 
person and put it into what is called a “feature vector.”  This process basically 
uses information that a person provides to assign that person to a point in a 
multi-dimensional space.

Let’s examine the case of an online dating service.  As of this writing, one 
popular service uses 30 dimensions to quantify a person.  The person is then 
assigned a point in 30-dimensional space.  Users then answer questions about 
their ideal match, thereby creating a virtual 30-dimensional profile.  Individuals 
who are “close” to this person’s ideal match profile in 30-dimensional space are 
considered to be potential romantic matches.

Many Dimensions  
in Everyday Life

CONTINUED
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SECTION 5.5 Now, the efficacy of this method could be debated—real humans are not 
necessarily well-described by only 30 characteristics.  Furthermore, not all 
traits are as important as others; smoking might be a deal breaker, whereas 
snoring might not be so bad.  Nuances such as these are missed by the rough, 
all-characteristics-are-equal, 30-D distance model.  Nonetheless, this system is 
an example of how many-dimensional objects are at play in our daily lives.

In this example, we used the idea that distance between points is a concept that 
generalizes no matter what dimension of space we are in.  We saw in a previous 
section that this works for two- and three-dimensional spaces, and we can use 
the same method to show that it works in four dimensions as well.  Of course, 
we can’t empirically verify a distance in four or more dimensions, but the math 
works.  This exemplifies an important idea in mathematics:  concepts from 
spaces or things that we do understand can be expanded to help us grasp spaces 
and things that we have no hope of experiencing first hand.  This boils down to 
the belief that once we have a good idea, we can “trust the math” in carrying its 
application to new contexts.  This lights the way forward, as we now turn to a 
completely different, and equivalent, way to think about dimension.

Many Dimensions  
in Everyday Life

CONTINUED
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SECTION

 
Rethinking Dimension•	
The Koch Curve•	
Fractal Snowflakes•	

Up until this point, we have been thinking of dimension as the number of 
independent measurements that are required to define a particular object 
in a particular space.  We will now, through the application of mathematical 
concepts, see how the dimension of an object can be defined without regard  
to numbers that we measure independently.  This new capacity will enable us  
to examine and describe new and fascinating objects that would otherwise  
baffle us.

Rethinking Dimension
One-dimensional, two-dimensional, and three-dimensional objects behave •	
differently as they scale—that is, as they expand or shrink.
We can write an expression for dimension based on scale factor and the •	
number of self-similar copies.

Let’s return to the one-, two-, and three-dimensional worlds that we explored 
earlier.  Recall the basic object in each dimension: the line segment, the square, 
and the cube, respectively.  Now we’re going to observe these objects as they 
undergo a process known as “scaling”; basically, we’ll explore how each object 
changes as we shrink or enlarge it by a constant factor.

First up, the line segment—let’s look at a segment of length one unit.

If we were to triple the size of this object, we would have a line segment of 
length three units.  We could view this result as three of our original line 
segment.  So, we see that if we scale the line segment by a factor of three, we 
end up with three copies of the original.  Each of these copies is said to be “self-
similar” to the original segment.

5.6

Scaling and the  
Hausdorff  
Dimension
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Now, let’s do the same thing with a square whose sides are each one unit in 
length. 

To increase the size of this object by a factor of three, we have 
to lengthen both the horizontal and vertical elements (or else it 
won’t be a square anymore).  When we do this, “scaling up” each 
segment by three, we get an entirely different relationship than 
we got with the scaling of the line segment.

Notice that our new shape is not made up of three copies of the original, but 
rather nine!  This is an important property of area: it does not scale linearly with 
the side length.  When we double the side length of a square from 3 units to 6 
units, the area does not just double—it quadruples!  

Initial area = 3 ×  3 = 9 units2  
Final area = 6 ×  6 = 36 units2  
Ratio of Final Area to Initial Area = 

 

36
9

 = 4 

Returning to our example square, notice that if we scale the side length by three, 
the resulting object is made up of nine copies of the original.  Note that 9 = 32.  
In words, when a square is scaled, the number of self-similar squares in the 
resulting square is equal to the scale factor to the second power.

Now, let’s look at the basic three-dimensional object, the cube.  
This time, as we scale the side length by a factor of three, we 
have to take three perpendicular directions into account. 

5.6

Scaling and the  
Hausdorff  
Dimension 
CONTINUED
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5.1SECTION

So, if we increase the side length of a cube systematically by a factor of three, 
the volume increases by a factor of 3 ×  3 ×  3, or 27.  This means that volume 
scales not linearly, and not as the square of side length (as does area), but, 
rather, as the cube of side length.  Furthermore, notice that each of the new 
cubes generated is self-similar to the original cube.  So, we have 27 = 33, 
verifying that the number of self-similar copies is equal to the scale factor to the 
third power.

This last point is important for any budding sculptors.  If you wish to make 
a large version of a small figurine, you would do well to make sure that the 
figure’s legs are strong enough to hold up its disproportionately heavier mass!
 
Let’s organize our results from the scaling of these three objects:

Notice that the exponent in each case is equal to the dimension of the object 
being scaled.  Let’s generalize this.

N = number of self-similar copies
S = Scale factor
D = Dimension

N = SD

5.6

Scaling and the  
Hausdorff  
Dimension
CONTINUED



Unit 5  |  39

UNIT 5 Other Dimensions 
textbook

SECTION 5.6 So, if we want to develop an equation that yields the dimension of an object 
when we know how many self-similar copies it has as it scales, we should solve 
the equation above for D.  To bring D out of the exponent position, we can use 
the natural logarithm, which comes in quite handy whenever we need to deal 
with exponents or convert powers to multiplication, or convert multiplication to 
addition.  So, taking the natural logarithm of both sides, we get:

ln N = D ln S

Dividing both sides by ln S, we get:

D =  
ln n

ln S

This equation can be used to determine the dimension of an object based 
solely on its properties of scaling and self-similarity.  Something similar to 
this definition of dimension was first identified by Felix Hausdorff, a German 
astronomer and mathematician working in the first quarter of the twentieth 
century.  The value he identified is commonly known as an object’s Hausdorff 
dimension.2  

The Koch Curve
The Koch curve has infinite perimeter in a finite space; this incongruity •	
indicates that it is not simply a 1-D object.
The Koch curve has an area of zero, which indicates that it is not a  •	
2-D object.

Now that we have a completely new way to look at dimension, let’s consider 
some strange objects that defy traditional explanation.  The first is the famous 
Koch curve, or “Koch Snowflake.”

Scaling and the  
Hausdorff  
Dimension
CONTINUED
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SECTION 5.6 This shape can be created by beginning with a line segment and then iteratively 
replacing the line segment with the following curve:

Let’s first look at this curve as if it were a 1-D line.  At the outset, its length 
would be one unit.  After the first iteration, its length would be 

 

4

3
 of a unit.

In the second iteration, each line segment is replaced with a curve that is 
 

4

3  as 
long.  So, we can multiply the length from the first iteration by the factor of 

 

4

3
 to 

obtain a length of 
 

4

3








2

 units for the second iteration of the Koch curve.

Scaling and the  
Hausdorff  
Dimension
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SECTION 5.6 Now, as we repeat the same steps for the third iteration, it should be evident 
that the new length will be 

 

4

3
 × 

 

4

3
 × 

 

4

3
 = 

 

4

3








3

 units.  We can generalize this by 
saying that the curve will increase in length by a factor of 

 

4

3
 with each iteration.  

Thus, we are led to conclude that the length of the total curve continually gets 
larger without bound!  This curve is infinite in length and yet stays within the 
confines of the page—very strange indeed!  Perhaps this is not a 1-D line but 
rather a 2-D plane figure.

As we can see in this progression of images, squares, no matter how small we 
make them, will “over count” the measurement of the curve.  They will never 
have the resolution that we need to cover only the curve and no extra space. 

Let’s see what happens if we treat each line segment as a square.  The area of 
the square each time will be equal to the length of the straight segment times 
itself.

Scaling and the  
Hausdorff  
Dimension
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SECTION 5.6 For the three cases depicted here (plus one thrown in to help show the trend) we 
have the following information:

It should be evident that the total area of this curve depends on the area of 
the squares we are using to measure it.  In fact, the smaller the squares, the 
smaller the area.  Notice that after the first iteration the area of the curve has 
gone from 1 unit2 to less than half of a square unit.  After the third iteration, the 
area has diminished to about a fifteenth of a square unit.  It’s clear to see that 
following this trend, the total area of the curve is headed towards zero!

In summary, measuring the curve as a 1-D object fails miserably, as it generates 
an infinite length, and measuring the curve as a 2-D object gives us an area of 
zero, which also classifies as a miserable failure.  Let’s return to our equation 
for the Hausdorff dimension to see if we can get to the root of this conundrum.

Fractal Snowflakes
Using the Hausdorff definition of dimension, we find that the dimension of •	
the Koch curve is some decimal value between 1 and 2.

Scaling and the  
Hausdorff  
Dimension
CONTINUED
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To find the Hausdorff dimension, we need to know how the self-similarity of 
this object relates to how it scales.  We see that after one iteration, each line 
segment is replaced with four copies of itself.  Furthermore, we see that each 
self-similar copy is 

 

1
3  the length of the original.  This means that our scale 

factor is 3 and our number of self-similar objects is 4.

Substituting these values for S and N in the dimension equation that we derived 
earlier, we get:

D = 
 
ln (4)
ln (3)

 ≈ 1.26..

Hence, this object is somewhere between one-dimensional and two-
dimensional!  Results like this are fractional, or fractal, dimensions, and the 
objects themselves are simply called “fractals.”

So, our path through the story of dimension has just taken another turn.  Not 
only have we glimpsed the behavior of dimensions higher than the three to 
which we are accustomed, but now we have also seen that objects can be 
described by non-integer dimensions.  Put another way, some objects seem to 
exist in spaces between intuitive dimensions. 

Fractals were popularized by Benoit Mandelbrot in the 1970s when it was 
found that many objects in nature resemble fractal designs to some degree 
or another.  Indeed, the vast numbers of intricate shapes found in nature are 
rarely as conveniently geometric as simple lines, squares, and planes.  In fact, 
natural shapes tend to exhibit intriguing behavior at different scales, and while 
not always exactly self-similar in the way that the Koch curve is, many natural 
objects exhibit statistical self-similarity.  As it turns out, this property can come 
in quite handy, as we shall see in the next section.

Scaling and the  
Hausdorff  
Dimension
CONTINUED
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How Long Is the Coastline of Britain?•	
Will the Real Jackson Pollock Please Stand Up?•	

In our analysis of the Koch curve, we were fortunate that it behaves so nicely—
that is, it lends itself to being measured.  Many objects in nature are not so 
“nice.”  They may exhibit properties of self-similarity either only at limited 
scales (e.g., a fern leaf)—or only in a rough, approximate manner—or both.

Nevertheless, the concept of fractal dimension can generally be used to help 
describe and analyze naturally occurring phenomena and objects.  In order to 
use this tool, however, we must replace our requirement of strict self-similarity 
with a notion of approximate, or statistical, self-similarity.  Let’s look at an 
example.

How Long is the Coastline of Britain?
Real objects are not exactly self-similar; rather, they are statistically  •	
self-similar.
The length of a curvy object, such as a coastline, depends on the size of the •	
ruler you use to measure it.

A famous application of fractals was posed as the question: “How Long is the 
Coastline of Britain?”.  This question embodies the fact that the value obtained 
when measuring the length of a complicated shoreline, such as that of Britain, 
depends on the length of the “ruler” that is used.  Indeed, as with the Koch 
curve, we can convince ourselves that the length can be as long as we choose.

5.7

Fractal by nature
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Benoit Mandlebrot saw that, if we view the coastline as a fractal, we can start 
to make some sense of its measurement.  The problem is that the curve does 
not repeat its exact shape at different scales, as the Koch curve does.  Rather, 
statistical features repeat at different-length scales.  This might include the 
number of bays or peninsulas of a certain scale that one finds when measuring 
with a specific ruler.

One might find that one quadrant of the entire curve contains three bays and 
four peninsulas of length one unit (here we’re letting a unit equal the length 
of one quadrant).  If we then look at one-eighth of the curve, our unit becomes 
smaller, and the larger bays and peninsulas that showed up in the first view 
become more-or-less flat.  New bays and peninsulas become evident, however, 
now that we have a more detailed view.  We might find that the number of 
smaller bays and peninsulas (of length 

 

1

8
) is similar to before—say, three bays 

and five peninsulas.  So, although the exact shape is not the same at both scales, 
the number of significant features is about the same.  This gives us the idea that 
the coastline is approximately self-similar.

Fractal by nature 
CONTINUED

Alexandre Van de Sande, HOW LONG IS THE COAST OF BRITAIN? STATISTICAL SELF-SIMILARITY  
AND FRACTIONAL DIMENSION (2004).  Courtesy of Alexandre Van de Sande at wanderingabout.com
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properties to find 
the dimension of 
our coastline, but 
we need a new 
technique.  The 
strategy we used 
previously to find  
the dimension of  
the Koch curve won’t 
work in this case, 

because we do not have exact self-similarity, but, rather, only statistical self-
similarity.  To find out more about a method that might work, let’s look again at 
the Koch curve and use rulers of different sizes to measure its length.

Recall that the first time we tried this, we found that the length of the curve 
approaches infinity as we take closer and closer looks.  This time, however, 
instead of being concerned with the absolute length, we’ll focus on how the 
length changes with the size of the ruler with which we choose to measure.   
We start with a ruler of length one and find that the length of the curve is 4 units.  
Now, if we measure with a ruler 

 

1

3  as long (what might be considered a “more 
sensitive” ruler), we find that the length is 16 × 

 

1

3







 units.  As we use smaller and 

smaller rulers, the following table begins to take shape:

Notice that nowhere so far 
are we concerned with finding 
copies that look exactly like 
the entire curve—we care 
only about how the measured 
length of the curve changes 
with the ruler size.  Hopefully, 
it is becoming apparent that 
this technique will work on 
curves that are not as uniform 
as the Koch curve.  To find the 
relationship between these 
quantities, we can plot them  
on a graph.

Fractal by nature 
CONTINUED

Same structure at different scales. 
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Notice that the scales with which we are dealing suggest that we should look at 
a logarithm graph (log-log) of these data.  This kind of plot is often useful when 
dealing with quantities (like these) that change exponentially.  To make the log-
log graph, we simply take the logarithm of all the quantities and re-plot the data.

Fractal by nature 
CONTINUED
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Now, to find out how these two values are correlated, we can look at the slope 
of the best-fitting line.  For simplicity’s sake, we’ll just choose the start and end 
points:

Slope = 
rise
run  

 
rise÷run =  

[(4log 4 – 3log3) – log 4]
[-3log 3 -0]

  =  
(log 4 – log 3)

-log 3

Subtracting this from 1 yields  
log 4
log 3 , which is the same expression for dimension 

that we obtained earlier by looking at self-similar copies.  

So, to find the dimension of our original coastline, which will allow us to come 
up with some sort of meaningful measurement, we can take a set of data that 
includes both the length of the ruler we use and the total length that we find.  If 
we then plot the data on a log-log graph, we can find the relationship between 
the choice of ruler and the total length.  This will generate a line (or we can 
choose a line of best fit), the slope of which is related to the dimension of the 
coastline.

Fractal by nature 
CONTINUED
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Note that the slope of this line is equivalent to 1 minus the dimension of the 
coastline—or, alternatively, the dimension of the curve is equal to 1 minus the 
slope of our line.  With this knowledge of the approximate dimension, we can 
select a unit of an appropriate size with which to make our measurements.  This 
unit is not a length and not an area, but something in between—call it “larea” for 
now.  Furthermore, it is specific to the coastline with which we are concerned, 
so it doesn’t provide a means of determining whether a certain coastline is 
“longer” than another.  However, it does enable us to talk about the relative 
curviness of shorelines.  For instance, we would expect a coastline with a fractal 
dimension close to 1 to be much more featureless than a coastline whose 
dimension is closer to 2.

Statistical self-similarity abounds in nature.  The surface of a dry landscape 
has the same features at many different scales.  The branching of trees follows 
similar rules.  One of Mandelbrot’s great contributions was seeing how fractals 
relate to the natural phenomena and rhythms of our world.  

Fractal by nature 
CONTINUED
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The works of Jackson Pollock exhibit statistical self-similarity at different •	
scales and have a fractal nature to them.
Measuring the fractal dimension of a Pollock-style painting is one tool that •	
can help in verifying its origin.

Another person who was 
fascinated by natural rhythms 
was the American painter 
Jackson Pollock.  Pollock was 
born in 1912 in Wyoming, and he 
relocated to New York at the age 
of 18.  Through developing his 
craft as a painter, he changed his 
technique dramatically in 1947.  
The drip paintings he began to 
create, eschewing all traditionally 
accepted concepts of form and 
rigidity in favor of pure emotion 
and crazily strewn lines, brought 
him fame.

On the surface, it seems that his technique could be easily replicated by anyone 
with a bucket of paint, a canvas, a garage, and a penchant for extreme moods.  
Recent mathematical analysis of his paintings has shown, however, that copying 
a Pollock is not as easy as it may at first appear. 

Richard Taylor, a physicist who pursued his analytical interest of Pollock’s work 
while earning a masters degree in art theory from the University of New South 
Wales, studied the statistical self-similarity of Pollock’s paintings.  His method 
was to take a digital scan of a Pollock painting and section it into squares of 
different sizes for analysis, much as we sectioned off the coastline of Britain 
previously.  For each square size, computers are used to identify certain physical 
traits of the paintings, somewhat analogous to the bays and peninsulas from the 
coastline example.  Researchers found that Pollock’s paintings exhibit statistical 
self-similarity, and are, therefore, fractals.  

Fractals were not widely known until the ‘60s, and Pollock died in 1956, so it is 
highly unlikely that he was intentionally trying to paint mathematical objects.  

Fractal by nature 
CONTINUED

Item 3217/Hans Namuth, JACKSON POLLOCK PAINTING 
AUTUMN RHYTHM: NUMBER 30, 1950 (1950). Courtesy: (c) 
Hans Namuth Ltd., courtesy Pollock-Krasner House and 
Study Center, East Hampton, NY.
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SECTION 5.7 Nevertheless, the fractal nature of his art is striking—and unique.  In fact, it is 
used, in conjunction with other methods, to authenticate paintings purported to 
be Pollock originals.  This “fractal fingerprint” method involves computing the 
fractal dimension of such a work and comparing it to the range of dimensions 
known to be exhibited in Pollock’s paintings.

Taylor claims that his technique “shouldn’t be regarded as a final word on 
Pollock authenticity, [although] it’s a pretty nifty use of fractal math.”3

It is clear that fractals, and fractal dimensions, initially discovered as abstract 
mathematical objects, have a fascinating connection to the natural world.  
Indeed, many of the objects that we encounter on a daily basis cannot be 
measured within the traditional confines of one, two, and three dimensions as 
independent parameters.  Rather, they must be evaluated on the basis of their 
scaling and self-similarity to be truly understood.

Fractal by nature 
CONTINUED
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The most basic conception of dimension is as a degree of freedom.•	
A point is an object with no properties other than location.•	
A space is a collection of locations.•	
Spaces can be characterized by their degrees of freedom.•	
A point in one dimension requires only one number to define it.•	
The number line is a good example of a one-dimensional space.•	
Line segments are objects that connect two points.•	
Distance in a one-dimensional space is found by taking the difference of two •	
distinct points.
Points in two-dimensional space require two numbers to specify them •	
completely.
The Cartesian plane is a good way to envision two-dimensional space.•	
Distance in the Euclidean version of two-dimensional space can be •	
calculated using the Pythagorean Theorem.  One way that different spaces 
are distinguished from one another is by the way that distance is defined.
The concepts of distance and angle extend naturally into three dimensions.•	
The way in which we extend our thinking from two to three dimensions •	
provides us with a template for thinking about higher dimensions.
Each time we consider a new degree of freedom, we introduce a new •	
property that cannot exist in lower dimensions. Area (for 2-D) and volume 
(for 3-D) are examples. 
 
 
 
 
 

Time is often thought of as the fourth dimension.•	
Time plays a key role as a dimension in mathematical formulations  •	
of physical laws such as general relativity and string theory.
The qualitative behavior of time as the fourth dimension is debatable.•	
A point in four-space, also known as 4-D space, requires four numbers  •	
to fix its position.
Four-space has a fourth independent direction, described by  •	
“ana” and “kata”.
In Euclidean four-space, our standard notions of Pythagorean distance  •	
and angle via the inner product extend quite nicely from three-space.

at a glance 
textbook
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The hypercube is the four-dimensional analog of the cube, square,  •	
and line segment.
A hypercube is formed by taking a 3-D cube, pushing a copy of it into the •	
fourth dimension, and connecting it with cubes.
Envisioning this object in lower dimensions requires that we distort  •	
certain aspects.
The tesseract is a 3-D object that can be “folded up,” using the fourth •	
dimension, to create a hypercube.
A viewer from the fourth dimension would see both our insides and our •	
outsides simultaneously.
Higher-dimensional viewing allows all sides of an object to be  •	
seen simultaneously.
Artists such as Picasso and Duchamp have used the concept of higher-•	
dimensional viewing in their works.

A sphere can be thought of as a stack of circular discs of increasing, then •	
decreasing, radii.
The process of slicing is one way to visualize higher-dimensional objects via •	
level curves and surfaces.
A hypersphere can be thought of as a “stack” of spheres of increasing, then •	
decreasing, radii.
Slicing a cube yields different types of polygons, depending on the angle at •	
which you slice.  This is in contrast to the slicing of a sphere, which always 
produces circles, regardless of the angle.
Slices of a hypercube are various polyhedra, not just a series of cubes.•	
Slices can miss crucial information about an object, such as whether or not •	
it is connected.
Projections are like shadows.•	
Projections are related to the inner product.•	
Projections preserve more information than slices, but they necessarily •	
distort the picture in some way.

at a glance 
textbook

3.2

Slices, Projections 
And Shadows

5.4SECTION

5.3

journey into the 
fourth Dimension

CONTINUED



Unit 5  |  54

UNIT 5

5.1SECTION

Dimension can be used as a rough way to quantify certain aspects of human •	
nature.
A 30-question survey can be used to create a 30-dimensional profile of a •	
person.
People can be matched according to their distance from each other in 30-•	
dimensional space.

•	 One-dimensional, two-dimensional, and three-dimensional objects behave 
differently as they scale—that is, as they expand or shrink.

•	W e can write an expression for dimension based on scale factor and the 
number of self-similar copies.

•	 The Koch curve has infinite perimeter in a finite space; this incongruity 
indicates that it is not simply a 1-D object.

•	 The Koch curve has an area of zero, which indicates that it is not a 2-D 
object.

•	U sing the Hausdorff definition of dimension, we find that the dimension of 
the Koch curve is some decimal value between 1 and 2.

•	R eal objects are not exactly self-similar; rather, they are statistically self-
similar.

•	 The length of a curvy object, such as a coastline, depends on the size of the 
ruler you use to measure it.

•	 The works of Jackson Pollock exhibit statistical self-similarity at different 
scales and have a fractal nature to them.

•	 Measuring the fractal dimension of a Pollock-style painting is one tool that 
can help verify its origin.
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