|
You can use statistics to determine whether it's possible for a player to develop skill in playing Push Penny. One effective way to analyze the data is to use the principles of probability. Note 3
We cannot know the outcome of a single random event in advance. However, if we repeat the random experiment over and over and summarize the results, a pattern of outcomes begins to emerge. We can determine this pattern by repeating the experiment many, many times, or we can also use mathematical probabilities to describe the pattern. In statistics, we use mathematical probabilities to predict the expected frequencies of outcomes from repeated trials of random experiments.
For example, if you toss a coin, your outcome could either be heads or tails. Since there are two possible outcomes, tossing a fair coin a large number of times would ultimately generate heads for half (or 50%) of the outcomes and tails for half of the outcomes.
When rolling dice, on the other hand, there are six possible outcomes for each die. So if you roll a fair die a large number of times, you would expect a three for about one-sixth of the outcomes, a five for one-sixth of the outcomes, and so forth.
We can use probability tables to express mathematical probabilities. This is the probability table for a fair coin:
This is the probability table for a fair die:
|