|
Although the frequency bar graph is useful in many ways, it, like the line plot, can be an awkward graph for large data sets, since the vertical axis corresponds to the frequency of each data value. For large data sets, some data values occur many times and have a high frequency. Consequently, the vertical axis would have to be scaled according to the largest frequency. Imagine the sheet of paper you'd need for the economy-size box of raisins!
An alternative is to use relative frequency, or frequency as a proportion of the whole set. A relative or proportional comparison is usually more useful than a comparison of absolute frequencies. For example, the statement "Five of the 17 boxes have 28 raisins" is more useful than the statement "Five boxes have 28 raisins."
In this case, the relative frequency of the count 5 is 5/17, which can also be written in decimal form as .294 (rounded to three digits). To find the percentage, multiply the decimal by 100 to obtain 29.4%. This means that 29.4% of the raisin boxes contain 28 raisins.
Here is a frequency table for the raisin count, with the corresponding relative frequencies written as fractions, decimals, and percentages:
|