Teacher resources and professional development across the curriculum

Teacher professional development and classroom resources across the curriculum

Monthly Update sign up
Mailing List signup
Follow The Annenberg Learner on LinkedIn Follow The Annenberg Learner on Facebook Follow Annenberg Learner on Twitter

Unit Videos

Course Introduction

girl looking at the course on a computer

Explore general chemistry concepts using real-life challenges in energy resources, materials development, biochemistry, and the environment. The thirteen half-hour programs explore essential topics that are part of any introductory chemistry course, achieving impact through clear explanations, rich motion graphics, dramatic demonstrations of key principles, interviews with key scientists, and a host of compelling examples that make chemistry relevant and…

View video >

Unit 1: Matter and the Rise of Atomic Theory

Solar World

This program traces the story of how humans have always practiced chemistry; how, over time, it developed from a practical discipline into a science. Today, we keep up the chemists' tradition to refine and purify substances. A current, real-life application of the "art of the meticulous" is the refining and purification of pure silicon from a common material—silica sand—for advanced electronics, such as cell phones and solar cells.

View video >

Unit 2: The Behavior of Atoms

balloon shrinking in the lab

This program explores the phases of matter—solids, liquids, and gases—and how particles in a given phase interact with each other. Phase diagrams explain at what temperature and pressure a given substance will be in a solid, liquid, or gas phase. Practical problems, like how to safely store enough hydrogen gas to power an automobile, are solved by understanding the different behaviors of solids, liquids, and gases. Understanding the relationships between…

View video >

Unit 3: Atoms and Light

Mike McCarthy in stadium

In the early 20th century, identification of the internal parts of the atom (electrons, protons, and neutrons) led to a modern subatomic theory. Meanwhile, the study of atomic spectra—the light given off by atoms at definite wavelengths—led to the Bohr model of the atom, where electrons exist at distinct energy levels and move between these levels by absorbing and emitting discrete quanta of energy. The measurement of atomic spectra has applications in…

View video >

Unit 4: Organizing Atoms and Electrons

Explanation of valence electrons

For centuries, chemists tried different methods to organize elements around patterns of chemical and physical trends, or regularities, eventually leading to the modern periodic table. Electron configuration is a powerful predictive tool, a simple extension from the periodic table. Physical characteristics, including atomic radius and reactivity, all depend on electron configuration and can be teased from a careful understanding of the periodic table…

View video >

Unit 5: Making Molecules

Beth Taylor in the lab

Molecules can form when atoms bond together by sharing electrons and can be represented by a useful shorthand called Lewis Structures. These visual representations provide information to predict the three-dimensional shapes of molecules using valence shell electron pair repulsion ("VSEPR") theory. Understanding how atoms bond within molecules provides insight into cell replication. Building on this knowledge, the shapes of molecules reveal the effectiveness…

View video >

Unit 6: Quantifying Chemical Reactions

beakers in lab

Stoichiometry gives us the quantitative tools to figure out the relative amounts of reactants and products in chemical reactions. Balancing the number of atoms on each side of the equation, calculating the amount of each reactant, and figuring out which reactant will run out first are all fundamental principles when designing any chemical reaction. These principles are applied when splitting water into hydrogen and oxygen for energy, manufacturing sodium…

View video >

Unit 7: The Energy in Chemical Reactions

combustion engine work

The phrase "chemical reaction" conjures up images of explosions, bubbling gases, flames, and smoke. So many chemical reactions have visible results because energy is being transferred from one form to another—the realm of thermodynamics. Thermodynamics provides rules for predicting the progress of a reaction and for harnessing the energy released. It is key to solving pressing engineering problems, such as making the next generation of cleaner, and more…

View video >

Unit 8: When Chemicals Meet Water

Adam Brunet Diving

The majority of chemical reactions happen in solutions—whether inside an espresso machine or in a human cell. For example, when we breathe, the nitrogen in the air dissolves in our blood. Henry's Law gives us the power to predict, prevent, and treat "the bends"—a life-threatening condition that can happen to SCUBA divers when nitrogen in the blood comes out of solution and forms gas bubbles. Solution chemistry provides tools to measure the concentration of…

View video >

Unit 9: Equilibrium and Advanced Thermodynamics

Wilton in lab

Light a match and chemical change happens in a one-way process: Reactants are transformed into products. But there are many chemical reactions called "equilibrium reactions" that operate in both directions: with reactants and products always present. The Unit 9 video will show how chemical equilibrium works, the essential role it plays in the function of the human body, and how it is exploited in chemical processes such as ammonia synthesis, a process that…

View video >

Unit 10: Acids and Bases

Adam Brunet by the pool

Acids and bases are found all around us, and the currency of acid-base chemistry is the proton, or hydrogen ion. Acid-base chemistry is part of everyday life, from baking and the food we eat to the innumerable reactions that keep the human body alive. Acid-base chemistry is measured on the pH scale—the concentration of hydrogen ions in a solution. Buffers can control pH, whether used in the lab or in the acid-base components of human blood. The role of…

View video >

Unit 11: The Metallic World

Cathy Drennan in lab

Metals allow the transfer of electrons through a process called oxidation-reduction, or "redox," when one species gains electrons while another loses them. Chemists take advantage of this process by using electron transfers to power the batteries in our flashlights, phones, or cars. In biochemistry, trace metals, such as cobalt in Vitamin B12, often drive chemical reactions that are essential for human health. Redox reactions also occur without metals…

View video >

Unit 12: Kinetics and Nuclear Chemistry

Wilton in bumper car

From an instantaneous explosion to the slow rusting of iron, the rates at which different chemical reactions proceed can vary tremendously depending on several factors, including temperature and concentration. Sometimes, like with the rotting of food, chemists want to slow down reaction rates. But often, the goal is to speed them up—and one way to do this is to use a catalyst. In this video, we will learn about catalysts and how using them can lead to…

View video >

Unit 13: Modern Materials and the Solid State

Ainissa outside lab

While chemical reactions in gases and liquids are essential to the understanding of chemistry, the chemistry of solid-state materials characterizes most of the interactions we have with matter on a daily basis. Chemists take advantage of the complexity of solids to engineer new materials, including nanoparticles, polymers, and advanced metal alloys. These new materials have many potential applications in sensors, advanced drug delivery systems, and space…

View video >

© Annenberg Foundation 2014. All rights reserved. Legal Policy