Teacher resources and professional development across the curriculum

Teacher professional development and classroom resources across the curriculum

Monthly Update sign up
Mailing List signup
Rediscovering Biology Logo
Online TextbookCase StudiesExpertsArchiveGlossarySearch
Online Textbook
Back to Unit Page
Unit Chapters
The Human Genome Project
Sequencing a Genome
Finding Genes
Is the Eukaryotic Genome a Vast Junkyard?
The Difference May Lie Not in the Sequence but in the Expression
Determining Gene Function from Sequence Information
The Virtues of Knockouts
Genetic Variation Within Species and SNPs
Identifying and Using SNPs
Practical Applications of Genomics
Examining Gene Expression
Proteins & Proteomics
Evolution & Phylogenetics
Microbial Diversity
Emerging Infectious Diseases
Genetics of Development
Cell Biology & Cancer
Human Evolution
Biology of Sex & Gender
Genetically Modified Organisms

Possessing detailed knowledge about the genetic makeup of individuals raises several complex ethical quandaries. How confidential should genetic information be? How should privacy concerns be weighed against other interests? If genetic information related to disease genes should be as confidential as any other health-related information, should there be databases of detailed genomic information on individuals? Even without detailed genomic databases, thirteen genetic markers are sufficient for the FBI to identify every person except identical twins. Should this type of genetic information be stored on all convicted criminals; everyone arrested for a crime; or on every individual, regardless of his or her past? Who should have access to detailed genetic information if it becomes available? Should it be accessible to law enforcement officers, physicians, research scientists, employers and potential employers, or insurance providers?

Sir Alec Jeffreys, the scientist who first developed the technique of genetic fingerprinting in Great Britain, is a proponent of a DNA database that contains the genetic profile of every individual in that country. To provide anonymity, however, he suggests that the actual identity of each individual be kept in a separate database with high security. Only certain circumstances, such as a link to a crime, would justify identification of the individual.

The NIH-DOE Working Group on the Ethical, Legal, and Social Implications (ELSI) has recommended that employers can request and use genetic information, but only to protect the health and safety of workers; such information must remain confidential. They also recommend that insurers cannot use genetic information to deny or limit health insurance coverage or to charge different fees based on this information. Overall, the focus of legislation should be to prevent discrimination of individuals based on genetic information.

In 1993, long before the human genome was completed, a committee of the Institute of Medicine of the National Academy of Sciences developed recommendations to prevent involuntary genetic testing and protect confidentiality. They concluded that the responsible use of genetic testing requires that individuals understand the tests, their significance, and their implications. Testing for diseases should be done only when individuals are capable of providing informed consent. This means not only that individuals must be informed, but that they also should understand the implications of that consent. Such informed consent requires an understanding of genetics by the public. Education in genetics must be increased to ensure that future generations have this knowledge.

Patenting of human genes is another ethical concern emerging from the human genome project. In order to be patentable under the U.S. Federal Patent Act, an invention must be "novel, nonobvious, and have utility." In applying for a patent on a human gene, applicants generally claim that the patent's holders will add to the utility of the natural gene by developing tests and therapies to fight diseases associated with that gene. Opponents of gene patenting think that patents will limit the ability of other scientists to do additional research on these genes.

Most patents are filed by private companies that plan to develop and market diagnostic tests and treatments that come from their research on a particular gene. These companies feel that, without a patent, they cannot afford to do the research that will lead to useful products. They argue they need the protection of a patent before they can invest millions of dollars in the development of new tests, drugs, and therapies. Some scientists counter that companies tend to patent genes even before they know what the gene does, so it is hard to understand how they can claim that they will increase the utility of such a gene. Making scientific data freely available, while still protecting the interests of private organizations that will provide the practical uses for the data, would be in the best interest of everyone.

Back Next


© Annenberg Foundation 2017. All rights reserved. Legal Policy