Teacher resources and professional development across the curriculum

Teacher professional development and classroom resources across the curriculum

Monthly Update sign up
Mailing List signup
Search
Follow The Annenberg Learner on LinkedIn Follow The Annenberg Learner on Facebook Follow Annenberg Learner on Twitter
Rediscovering Biology Logo
Home
Online TextbookCase StudiesExpertsArchiveGlossarySearch
Online Textbook
Back to Unit Page
Unit Chapters
Genomics
Proteins & Proteomics
Evolution & Phylogenetics
Microbial Diversity
Emerging Infectious Diseases
HIV & AIDS
Genetics of Development
Genes and Development
Differentiation and Genetic Cascades
The Details of Gene Expression
Establishing the Gradient and Coordinate Genes
Responses to the Concentration Gradient
Homeotic Genes
Cell Lineage Mapping and C. Elegans
Fate Maps
Cell-Cell Communication and Signal Transduction
Conservation of the Homeobox
Conservation of the "Control Switch" Gene for Eyes
A Brief Look at Plant Development
Stem Cells
Coda
Cell Biology & Cancer
Human Evolution
Neurobiology
Biology of Sex & Gender
Biodiversity
Genetically Modified Organisms
"Animals that look nothing like each other develop by using much the same basic 'toolkit' of molecules and often in much the same ways."
- M. Palopoli and N. Patel (p. 502)1


Development poses some of the central questions of biology: How does a single cell become a complex multicellular organism like us? What role do our genes play in the processes of development? From the early decades of the twentieth century, geneticists knew about mutants that altered phenotypes because of the actions of various genes during development. In numerous cases biologists knew where on the chromosome the mutant gene was located and how the mutant allele was transmitted from parent to offspring. Nevertheless, the actual role the genes play in development remained a "black box" mystery until around 1980.

Starting in the late 1970s geneticists figured out the details involved in the genetic control of development in model systems such as the fruitfly Drosophila melanogaster. They found that many of these developmental genes shared similar features. During the 1980s and 1990s geneticists made an even more surprising discovery: the same principles, and often the same genes, involved in development in model organisms (such as fruit flies and zebrafish) are also involved in controlling development in most other animals, including humans.

Back Next


  Home  |  Catalog  |  About Us  |  Search  |  Contact Us

| Follow The Annenberg Learner on Facebook
 

  © Annenberg Foundation 2013. All rights reserved.
Privacy Policy