Teacher resources and professional development across the curriculum

Teacher professional development and classroom resources across the curriculum

Monthly Update sign up
Mailing List signup
Search
Follow The Annenberg Learner on LinkedIn Follow The Annenberg Learner on Facebook Follow Annenberg Learner on Twitter
Rediscovering Biology Logo
Home
Online TextbookCase StudiesExpertsArchiveGlossarySearch
Online Textbook
Back to Unit Page
Unit Chapters
Genomics
Proteins & Proteomics
Evolution & Phylogenetics
Microbial Diversity
Emerging Infectious Diseases
HIV & AIDS
Genetics of Development
Cell Biology & Cancer
Introduction
What Is Cancer?
Genetics of Cancer
Cell Cycle
What Causes Cancer?
Tumor Biology
Viruses and Cancer
Environmental Factors
Detecting and Diagnosing Cancer
Traditional Treatments
Newer Treatments
Preventing Cancer
Screening, Genetic Tests, and Counseling
Human Evolution
Neurobiology
Biology of Sex & Gender
Biodiversity
Genetically Modified Organisms
"We now understand a lot about cancer. We know that it results from a series of genetic changes having to do with cell division and growth control and genetic instability, mortality, the suicide mechanism in cells; the ability of the cells to migrate; the ability of the cells to attract to them a blood supply. And so that's pretty profound that in a few sentences one can summarize a sophisticated, fundamental understanding of what a cancer is."
-- Leland Hartwell


Introduction

A multicellular organism can thrive only when all its cells function in accordance with the rules that govern cell growth and reproduction. Why does a normal cell suddenly become a "rebel," breaking the rules, dividing recklessly, invading other tissues, usurping resources, and in some cases eventually killing the body in which it lives?

To understand how and why cells rebel, we need to understand the normal functions of cell growth and reproduction. From the mid-nineteenth century on, research in cell biology, biochemistry, and molecular biology has provided astonishingly detailed information about the molecules and processes that allow cells to divide, grow, differentiate, and perform their essential functions. This basic knowledge of cell biology has also led to practical discoveries about the mechanisms of cancer. Specific molecules that control the progression of a cell through the cell cycle regulate cell growth. An understanding of normal cell cycle processes and how those processes go awry provides key information about the mechanisms that trigger cancer. Loss of control of the cell cycle is one of the critical steps in the development of cancer.

Although cancer comprises at least 100 different diseases, all cancer cells share one important characteristic: they are abnormal cells in which the processes regulating normal cell division are disrupted. That is, cancer develops from changes that cause normal cells to acquire abnormal functions. These changes are often the result of inherited mutations or are induced by environmental factors such as UV light, X-rays, chemicals, tobacco products, and viruses. All evidence suggests that most cancers are not the result of one single event or factor. Rather, around four to seven events are usually required for a normal cell to evolve through a series of premalignant stages into an invasive cancer. Often many years elapse between the initial event and the development of cancer. The development of molecular biological techniques may help in the diagnosis of potential cancers in the early stages, long before tumors are visible.

Back Next


© Annenberg Foundation 2014. All rights reserved. Legal Policy